Vocal hyperfunction refers to chronic misuse and abuse of the voice that occurs due to excessive or unbalanced muscle tension during voiced speech. This condition can lead to the formation and growth of benign vocal fold lesions (e.g., nodules) as well as general degradation of vocal quality. The FAST lab employs numerical and physical models of voiced speech to investigate how irregular contact mechanics contribute to the etiology of vocal fold lesions. This work is funded by the National Institute on Deafness and other Communication Disorders (P50DC015446-01A1) through the Voice Center at Massachusetts General Hospital, in collaboration with colleagues at the Universidad Técnica Federico Santa María and the University of Waterloo.

Funding

This work is funded by a grant from the National Institute on Deafness and Communication Disorders (P50DC015446-01A1).

Related Publications

  1. Motie-Shirazi, M., Peterson, S. D., Zañartu, M., Mehta, D. D., Hillman, R. E., Erath, B. D., 2022, “Effect of nodule size and stiffness on phonation threshold and collision pressures in a synthetic self-oscillating vocal fold model,” Journal of the Acoustical Society of America, in review.
  2. Motie-Shirazi, M., Zañartu, M., Peterson, S. D., Mehta, D. D., Hillman, R. E., Erath, B. D., 2022, “Collision pressure and dissipated power does in a self-oscillating silicone vocal fold model with a posterior glottal opening,” Journal of Speech, Language, and Hearing Research, 65:2829-2845.
  3. Alzamendi, G. A., Peterson, S. D., Erath, B. D., Hillman, R. E., Zañartu, M., 2022, “Triangular body-cover model of the vocal folds with coordinated activation of the five intrinsic laryngeal muscles,” Journal of the Acoustical Society of America, 151:17-30.
  4. Motie-Shirazi, M., Zañartu, M., Peterson, S. D., Erath, B. D., 2021, “Vocal fold dynamics in a synthetic self-oscillating model: intraglottal aerodynamic pressure and energy,” Journal of the Acoustical Society of America, 150:1332-1345.
  5. Motie-Shirazi, M., Zañartu, M., Peterson, S. D., Erath, B. D., 2021, “Vocal fold dynamics in a synthetic self-oscillating model: contact pressure and dissipated energy dose,” Journal of the Acoustical Society of America, 150:478-489.
  6. Hadwin, P. J., Erath, B. D., Peterson, S. D., 2021, “The influence of flow model selection on finite element model parameter estimation using Bayesian inference,” Journal of the Acoustical Society of America, 1:045204.
  7. Mehta, D. D., Kobler, J. B., Zeitels, S.M., Zañartu, M., Ibarra, E. J., Alzamendi, G. A., Manriquez, R., Erath, B. D., Peterson, S. D., Petrillo, R. H., Hillman, R. E., 2021, Direct measurement and modeling of intraglottal, subglottal, and vocal fold collisions pressures during phonation in an individual with a hemilaryngectomy, Applied Sciences, 11:7256.
  8. Stewart, M. E., Erath, B. D., 2021, “Investigating blunt force trauma to the larynx: the role of inferior-superior vocal fold displacement on phonation,” Journal of Biomechanics, 121:110377.
  9. Alzamendi, G. A., Manríquez, R., Hadwin, P. J., Deng, J. J., Peterson, S. D., Erath, B. D., Mehta, D. D., Hillman, R. E., Zañartu, M. , 2020, “Bayesian estimation of vocal function measures using laryngeal high-speed videoendoscopy and glottal airflow estimates: An in vivo case study,” Journal of the Acoustical Society of America, 147:EL434.
  10. Mehta, D. D., Kobler, J. B., Zeitels, Zañartu, M., Erath, B. D., Motie-Shirazi, M., Peterson, S. D., Petrillo, R. H., Hillman, R. E. 2019, “Toward development of a vocal fold contact pressure probe: Bench-top validation of a dual-sensor probe using excised canine larnx models,” Invited submission to a special issue on Computational Methods and Engineering Solutions to Voice in Applied Sciences, 9:4360.
  11. Motie-Shirazi, M., Zañartu, M., Peterson, S. D., Mehta, D. D., Kobler, J. B., Hillman, R. E., Erath, B. D., 2019, “Toward development of a vocal fold contact pressure probe: Sensor characterization and validation using synthetic vocal fold models,” Invited submission to a special issue on Computational Methods and Engineering Solutions to Voice in Applied Sciences, 9:3002.
  12. Díaz-Cádiz, M. E., Peterson, S. D., Galindo, G. E., Espinoza, V. M., Motie-Shirazi, M., Erath, B. D., Zañartu, M. , 2019, “Estimating vocal fold contact pressure from raw laryngeal high-speed videoendoscopy using a Hertz contact model,” Invited submission to a special issue on Computational Methods and Engineering Solutions to Voice in Applied Sciences, 9:2384.
  13. Hadwin, P. J., Motie-Shirazi, M., Erath, B. D., Peterson, S. D., 2019, “Bayesian inference of vocal fold model properties from glottal area waveforms using a 2D finite element model,” Invited submission to a special issue on Computational Methods and Engineering Solutions to Voice in Applied Sciences, 9:2735.
  14. Erath, B. D., Peterson, S. D., Weiland, K. S., Plesniak, M. W., Zañartu, M., 2019, “An acoustic source model for asymmetric intraglottal flow with application to reduced-order models of the vocal folds,” PLoS One, 14:e0129914.
  15. Galindo, G., Peterson, S. D., Erath, B. D., Castro, C. Hillman, R. E., Zañartu, M., 2017, “Modeling the pathophysiology of phonotraumatic vocal hyperfunction with a triangular glottal model of the vocal folds,” Journal of Speech, Language and Hearing Research,60:2452-2471.
  16. Erath, B. D., Zañartu, M. Peterson, S. D., 2017, “Modeling viscous dissipation during vocal fold contact: The influence of tissue viscosity and thickness with implications for hydration,” Biomechanics and Modeling in Mechanobiology, 16:947-960.