HW Set 4

1) For a pipe of radius r_0 show that

$$-\overline{u'v'} + v\frac{dU}{dy} = u^{*2}\left(1 - \frac{y}{r_o}\right)$$

- 2) For Rannie's eddy viscosity model, $\frac{v_T}{v} = \sinh^2 k_1 y^+$. Show that the corresponding mean velocity field is given by $U^+ = \frac{1}{k_1} \tanh(k_1 y^+)$.
- 3) Show that the mixing length model follows from the assumption of local equilibrium (production = dissipation). (Hint: $v_{T} = k^{\frac{1}{2}} \ell$, $-\overline{u'v'} \approx C_{D}^{-1/2} k$).
- 4) Develop a two-equation type model for the mean and mean-square temperature fluctuation in a boundary layer flow. (Hint: follow the steps similar to those for $k \varepsilon$ model.)

ME 637