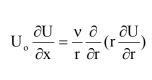
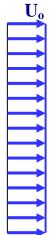
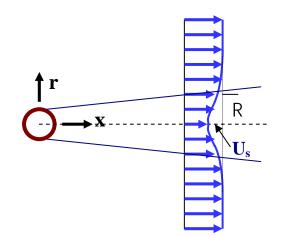
1. (20 Points) Consider the turbulent flow of an incompressible fluid with Pr=1. Estimate the order of magnitude of the following quantities in terms of u, λ , θ and Λ :


a)
$$\overline{u_{k}'} \frac{\partial u_{k}'}{\partial x_{i}} u_{i}'$$
 b) $\overline{\frac{\partial^{2} \omega_{i}'}{\partial x_{j} \partial x_{j}} \frac{\partial \omega_{i}'}{\partial x_{k} \partial x_{k}}}$ c) $\overline{\omega_{i}'} \frac{\partial u_{j}'}{\partial x_{i}} u_{j}'$ d) $\overline{\omega_{i}'} \frac{\partial u_{i}'}{\partial x_{k}} \frac{\partial u_{j}'}{\partial x_{k}}$ e) $\overline{\frac{\partial u_{i}'}{\partial x_{k}} \frac{\partial u_{j}'}{\partial x_{k}}} D_{ij}$ f) $\overline{\frac{\partial \omega_{k}'}{\partial x_{i}} \frac{\partial^{2} \omega_{i}'}{\partial x_{i} \partial x_{k}}}$


2. (30 Points) The Burger equations for momentum and hear transfer are given as


$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = v \frac{\partial^2 u}{\partial x^2}$$
 and $\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} = v \frac{\partial^2 T}{\partial x^2}$

Derive the transport equation for the velocity-temperature correlation $\overline{u'T'}$ for the burger model. Identify the terms corresponding to production, dissipation, diffusion and convection. Find the order of magnitude of different terms.

3. (25 Points) For a laminar axisymmetric wake flow behind a sphere, obtain the variations of U_s and Rwith x. The equation governing of motion is given as

4. (25 Points) Determine the contribution of eddies of size r to the correlations a) $\overline{\omega_i'\omega_j'}\frac{\partial u_i'}{\partial x_k}u_j'$ b) $\overline{\frac{\partial \omega_k'}{\partial x_j}\frac{\partial \omega_k'}{\partial x_j}}$. For r being Λ , λ , and η evaluate the these contribution and compare.