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Probability Density Formulation (pdf) in Turbulence 
 
 
Lundgen's pdf Formulation [Phys. Fluids (1967) Vol. 10, 969.] 
 
 Let 
 

 ( )( )Uxu −δ=ℑ t,          (1) 
 
then the probability density function of u  being U  is given by 
 

 ( ) ( ) >ℑ>=<−δ=< Ut,,f uxU .      (2) 
 
Now evaluating the time derivative of ℑ  and using chain rule, we find 
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But iu  satisfies the Navier-Stokes equation and continuity.  These are 
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Using Equation (4) in (3) we find 
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Note that 
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Equation (5) may be restated as 
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Taking expected value of (7), it follows that  
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or 
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Equation (9) governs the probability density function of turbulent flow.  It is interesting 
to note that the nonlinear convective term is automatically taken care of, but the pressure 
and viscous terms need to be closed.  
 

Lundgren introduced the second order joint density defined as 
 

 ( ) ( )( ) ( )( ) >−δ−δ=< 22112121 UxuUxuxxUU t,t,t,,;,f2    (10) 
 
Also taking divergence of Navier-Stokes equation, and solving the result for pressure, it 
follows that 
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where ( )xx ′,G  is the Green function for 2∇  operator.  The pressure term in the pdf 
equation may be restated as 
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Similarly, the viscous term can be written as 
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Therefore, 
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Equation (14) for the first order pdf involves second order pdf, which is the 
characteristics difficulty of the turbulence closed problem. 
 
 
Approximate First Order pdf Closure Methods 
 
 
 The transport equation for the first order pdf as given Equation (9) may be 
restated as  
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where 
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Lundgren Relaxation Model 
 
 Lungren obtained the following relaxation model for first order pdf : 
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In deriving Equation (17) the following closure assumptions are used: 
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where 
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Here, 4=κ , iiuu
2
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k ′′= , and ε  is the dissipation rate. 

 
 
Chung Model (Fokker-Planck Equation) 
 
 An alternative Fokker-Planck type closure model was suggested by Chung.  That 
is,  
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The corresponding closed pdf equation becomes 
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where 
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Chung original derivation follows from a Langevin equation. 
 
 
Chapman-Enskog Approximation 
 

Using the Chapman-Enskog approximation method, Lundgren (Phys. Fluids, Vol. 
12, 485 (1969)) found a solution for the first order pdf.  That is 
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Here τ  is the relaxation time and κ  is a constant 
 
 
Equations of Balance 
 

 Multiplying the pdf transport equation by 1, c , and 2c
2
1

 and integrating over the 

entire velocity space, we find 
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Note that the viscous diffusion term is neglected. 
 
Constitutive Equations 
 
 The constitutive equations become 
 

 ijTijij d2k
3
2

P ν−δ=        (33) 

 

 k
x

Q
i

Ti ∂
∂

κ−= , TT 3
5

ν=κ       (34) 

 
 



 6 

the eddy viscosity satisfies the following equation 
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Limiting cases for Tν : 
 

When diffusion is small, 
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Therefore, 
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Chapman-Enskog method gives qualitatively reasonable results (with about 10 to 30% 
error) for simple shear flows.  Numerical results for the case of a turbulent Couette flow 
obtained by Srinivansan et al. (Phys Fluids, Vol. 20, 554 (1977)) is described in 
following section. 
 
 



 7 

Couette Flow 

 
 
 

Mean flow velocity profiles. 

Reynolds stress profiles. 


