Prandtl's Mixing Length Hypothesis

The general form of the Boussineq eddy viscosity model is given as
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where n; is the eddy viscosity. For thin shear layer, the relevant comporent of (1) may
be restated as

L= nT%. 2)

Prandtl assumed that n; ~u/ , where u isaturbulent velocity scaleand /¢, isreferred
to as the mixing length. Furthermore, Prnadtl postulated that
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The mixing length ¢ depends on the nature of the flow and, in generd, is space
dependent.

For free shear flows, 7, is proportional to the half-width of the shear layer ¢. For
different flows, the mixing lengths are given as

¢, =0.097, forplanejet,
¢, =0.075¢, for circular jet, (5)
¢, =0.07¢, for mixing layer.

For boundary layer flows, several different forms were suggested. For instance, Escudier
(1966, Imperia College Report) assumed
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Variation of mean velocity and mixing length
in aturbulent boundary layer

For pipe flows, Nikuradse suggested the following expression:
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Variation of mixing length in aturbulent pipe
flow according to Nikuradse.



Shortcomings of Mixing Length Hypothesis

The eddy viscosity of the mixing length model as is gven by equation (4) implies
that

n, =0 for —=0. (8)

However, Equation (8) contradicts the experimental data in that n., in general, is not

zero when % =0. For example, it is observed that n; » 0.8n; |, at the center of a

pipe where % vanishes.

Note that equation (8) usually does not introduce significant errors for momentum

transport. Thisis because the turbulent stress approaches zero as % ® 0. However, the

mixing length hypothesis aso implies that
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where g, is the heat or mass diffusivity. When % =0, equation (9) implies that

g; =0. This result, however, produces major errors in engineering heat transfer
calculations.

The figure shows an example of a heat exchanger where large resistance to heat
flow is predicted by the mixing length model but never observed experimentally.
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viscosity in a heat exchanger.



Another example of failure of the mixing length theory is illustrated in the
recirculating flow shown in the figure:
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Schematics of backward facing step flows.

Experimental data indicates that the maximum heat flux that occurs at the

reattachment point, while the mixing length model leadsto g, =n; =0 (since % =0).

One-Equation Turbulence Models

Many of the one and multi-equation turbulence models are based on the Prandtl -
Kolmogorov equation given by

n, = k¢, (10)
where k = %m: is the kinetic energy of turbulence and ¢ isaturbulent length scale. It
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is expected that k2 be a better representative of the turbulent velocity scale when

compared with /¢ ‘E
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The general equation for dynamics of k isgiven as
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For athin shear layer, equation (11) may be restated as
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where the viscous diffusion is neglected and e is the dissipation. Equation (12) clearly
shows that the kinetic energy of turbulence is convected, diffused, produced, and
dissipated.

Modding k-Equation

To close the kequation, the unknown terms in equation (12) must be modeled.
We assume
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where n; isgiven by (10). Thediffusiontermin (12) is modeled by agradient law. i.e.,
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where s, isaconstant Prandtl number for k.

Thedissipation is given as
3
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Therefore, the closed k-equation becomes
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Here, s, and c, areconstantsand ¢ isalength scale distribution.



Near Wall Distribution

Near a wall, the convection and diffusion of turbulent kinetic energy may be
neglected. The production must then be balanced by the dissipation, and Equation (16)
then becomes
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Using (10), wefind
c, =¥ (18)

ue
From the experimental results, one finds - ue » 0.25~ 0.3.

Thus,
» » 0.07 ~0.08. (19)
For turbulence kinetic energy Prandtl number,
s, =1 (20)

isusualy used.

Distribution of Length Scale

The distribution of the length scale ¢ is needed to complete the system of
governing equations. Near awall, from (18), we find

@ = cik. (21)

Using (10) and (13), we find
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Also, we know that in the inertial sublayer,
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Using (23) in (22) and solving for ¢, wefind
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For c, =0.08, k =0.4, wefind
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It was suggested that to use equation (24) in the entire flow domain with 7
given by an empirica mixing length expression. Nikuradse's equation given by (7) has
been used extensively. In immediate vicinity of the wall, further modification for viscous
effects are needed.

Achievements of the M odel

Heat transfer in the heat exchanger and separated flows are predicted with
reasonable accuracy.

Shortcomings

Transport of the turbulent length scale is not accounted for.
The modédl offers little advantage over the mixing length model.



