
Prandtl's Mixing Length Hypothesis 
 
 The general form of the Boussineq eddy viscosity model is given as 
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where Tν  is the eddy viscosity. For thin shear layer, the relevant component of (1) may 
be restated as 
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Prandtl assumed that mT ~ luν , where u  is a turbulent velocity scale and ml  is referred 
to as the mixing length.  Furthermore, Prnadtl postulated that 
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The mixing length ml  depends on the nature of the flow and, in general, is space 
dependent. 
 
 For free shear flows, ml  is proportional to the half-width of the shear layer l . For 
different flows, the mixing lengths are given as 
 
 ll 09.0m = , for plane jet, 
 
 ll 075.0m = , for circular jet,                         (5) 
 
 ll 07.0m = , for mixing layer. 
 
For boundary layer flows, several different forms were suggested. For instance, Escudier 
(1966, Imperial College Report) assumed 
 



Variation of mean velocity and mixing length 
in a turbulent boundary layer 

 

 
















κ
κ

≥
δ

δκ

κ
κ≤

δ
κ

=
0

0

0

m y

yy
l .              (6) 

 
where 41.0=κ  and 09.00 =κ . 
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For pipe flows, Nikuradse suggested the following expression: 
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where 0r  is the radius of the pipe. 
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Variation of mixing length in a turbulent pipe 
flow according to Nikuradse. 
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Shortcomings of Mixing Length Hypothesis 
 
 The eddy viscosity of the mixing length model as is given by equation (4) implies 
that 
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However, Equation (8) contradicts the experimental data in that Tν , in general, is not 

zero when 0
y
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=
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.  For example, it is observed that maxTT |8.0 ν≈ν  at the center of a 
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y
U

∂
∂

 vanishes. 

 
 Note that equation (8) usually does not introduce significant errors for momentum 

transport.  This is because the turbulent stress approaches zero as 0
y
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→
∂
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.  However, the 

mixing length hypothesis also implies that 
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where Tγ  is the heat or mass diffusivity.  When 0
y
U

=
∂
∂

, equation (9) implies that 

0T =γ .  This result, however, produces major errors in engineering heat transfer 
calculations. 
 
 The figure shows an example of a heat exchanger where large resistance to heat 
flow is predicted by the mixing length model but never observed experimentally. 
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Variations of mean velocity and eddy 
viscosity in a heat exchanger. 

 



 Another example of failure of the mixing length theory is illustrated in the 
recirculating flow shown in the figure: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Experimental data indicates that the maximum heat flux that occurs at the 

reattachment point, while the mixing length model leads to  0 TT =ν=γ  (since 0
y
U

=
∂
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). 

 
One-Equation Turbulence Models 
 
 Many of the one and multi-equation turbulence models are based on the Prandtl-
Kolmogorov equation given by 
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k ′′=  is the kinetic energy of turbulence and l  is a turbulent length scale.  It 

is expected that 2
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k  be a better representative of the turbulent velocity scale when 

compared with 
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 The general equation for dynamics of  k is given as 
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Reattachment Point 

Schematics of backward facing step flows. 



 
For a thin shear layer, equation (11) may be restated as 
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where the viscous diffusion is neglected and ε  is the dissipation.  Equation (12) clearly 
shows that the kinetic energy of turbulence is convected, diffused, produced, and 
dissipated. 
 
 
Modeling k-Equation 
 
 To close the k-equation, the unknown terms in equation (12) must be modeled. 
We assume 
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where Tν  is given by (10).  The diffusion term in (12) is modeled by a gradient law. i.e., 
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where kσ  is a constant Prandtl number for k. 
 
 The dissipation is given as 
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Therefore, the closed k-equation becomes 
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Here, kσ  and Dc  are constants and l  is a length scale distribution. 
 
 
 
 
 



Near Wall Distribution 
 
 Near a wall, the convection and diffusion of turbulent kinetic energy may be 
neglected. The production must then be balanced by the dissipation, and Equation (16) 
then becomes 
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Using (10), we find 
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From the experimental results, one finds 3.0~25.0
k
vu

≈
′′

− . 

 
Thus, 
 

08.0~07.0cD ≈ .             (19) 
 
 For turbulence kinetic energy Prandtl number,  
 
 1k =σ                (20) 
 
is usually used. 
 
 
Distribution of Length Scale 
 
 The distribution of the length scale l  is needed to complete the system of 
governing equations.  Near a wall, from (18), we find 
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Using (10) and (13), we find 
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Also, we know that in the inertial sublayer, 
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Using (23) in (22) and solving for l , we find 
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For 08.0cD = , 4.0=κ , we find 
 
 y2.0=l               (25) 
 

It was suggested that to use equation (24) in the entire flow domain with ml  
given by an empirical mixing length expression.  Nikuradse's equation given by (7) has 
been used extensively.  In immediate vicinity of the wall, further modification for viscous 
effects are needed. 
 
 
Achievements of the Model 
 
 Heat transfer in the heat exchanger and separated flows are predicted with 
reasonable accuracy. 
 
 
Shortcomings 
 
• Transport of the turbulent length scale is not accounted for.  
• The model offers little advantage over the mixing length model. 
 

 
 
 
 


