CONSERVATION LAWS

Axiom 1: Principle of Conservation of Mass

Mass is invariant under the motion. That is,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{v}} \rho \mathrm{dv}=0 \tag{1}
\end{equation*}
$$

Using the Reynolds transport theorem, we find

$$
\begin{equation*}
\frac{\partial}{\partial \mathrm{t}} \int_{\mathrm{v}} \rho \mathrm{dv}+\int_{\mathrm{s}} \rho \mathbf{v} \cdot \mathbf{d s}=0 \quad \text { (Global) } \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{\mathrm{v}}\left(\frac{\partial \rho}{\partial \mathrm{t}}+\left(\rho \mathrm{v}_{\mathrm{k}}\right)_{, \mathrm{k}}\right) \mathrm{dv}=0 \tag{3}
\end{equation*}
$$

That leads to the equation of continuity

$$
\begin{equation*}
\frac{\partial \rho}{\partial \mathrm{t}}+\left(\rho \mathrm{v}_{\mathrm{k}}\right)_{, \mathrm{k}}=0 . \quad(\text { Local }) \tag{4}
\end{equation*}
$$

Axiom 2: Principle of Balance of Linear Momentum

The time rate of change of momentum is equal to the resultant force acting on the body. That is

$$
\begin{equation*}
\frac{d}{d t} \int_{v} \rho v_{k} d v=\int_{v} \rho f_{k} d v+\int_{s} t_{k}^{(n)} d s \tag{5}
\end{equation*}
$$

where f_{k} is the acceleration of the body force and $t_{k}^{(n)}$ is the surface traction force. Using the Reynolds transport equation, we find

$$
\begin{equation*}
\frac{\partial}{\partial \mathrm{t}} \int_{\mathrm{v}} \rho \mathrm{v}_{\mathrm{k}} \mathrm{dv}+\int_{\mathrm{s}} \rho \mathrm{v}_{\mathrm{k}} \mathrm{v}_{\mathrm{j}} \mathrm{ds} \mathrm{~s}_{\mathrm{j}}=\int_{\mathrm{v}} \rho \mathrm{f}_{\mathrm{k}} \mathrm{dv}+\int_{\mathrm{s}} \mathrm{t}_{\mathrm{k}}^{(\mathrm{n})} \mathrm{ds} . \text { (Global) } \tag{6}
\end{equation*}
$$

Introducing the stress tensor $\mathrm{t}_{\ell \mathrm{k}}$ as

$$
\begin{equation*}
\mathrm{t}_{\mathrm{k}}^{(\mathrm{n})}=\mathrm{t}_{\ell \mathrm{k}} \mathrm{n}_{\ell}, \mathbf{t}^{(\mathrm{n})}=\mathbf{n} \cdot \mathbf{t}, \tag{7}
\end{equation*}
$$

the last term in (6) may be restated as

$$
\int_{\mathrm{s}} \mathrm{t}_{\ell \mathrm{k}} \mathrm{n}_{\ell} \mathrm{ds}=\int_{\mathrm{v}} \mathrm{t}_{\ell \mathrm{k}, \ell} \mathrm{dv} .
$$

Using the divergence theorem in the second term of (6) or noting that $\frac{d}{d t}(\rho d \mathbf{v})=0$ in (5), we find

$$
\int_{\mathrm{v}}\left(\rho \frac{\mathrm{dv}_{\mathrm{k}}}{\mathrm{dt}}-\rho \mathrm{f}_{\mathrm{k}}-\mathrm{t}_{\ell \mathrm{k}, \ell}\right) \mathrm{dv}=0
$$

This implies that

$$
\begin{equation*}
\rho \frac{\mathrm{dv}_{\mathrm{k}}}{\mathrm{dt}}=\rho \mathrm{f}_{\mathrm{k}}+\mathrm{t}_{\ell \mathrm{k}, \ell} . \quad \text { (Local) } \tag{8}
\end{equation*}
$$

Axiom 3: Principle of Balance and Angular Momentum

Time rate of change of angular momentum about a fixed point is equal to the resultant moments about that point. That is

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{v}} \rho\left(\sigma_{\mathrm{k}}+\varepsilon_{\mathrm{kmj}} \mathrm{r}_{\mathrm{m}} \mathrm{v}_{\mathrm{j}}\right) \mathrm{dv}=\int_{\mathrm{v}} \rho \varepsilon_{\mathrm{kmj}} \mathrm{r}_{\mathrm{m}} \mathrm{f}_{\mathrm{j}} \mathrm{dv}+\int_{\mathrm{s}} \varepsilon_{\mathrm{kmj}} \mathrm{r}_{\mathrm{m}} \mathrm{t}_{\mathrm{j}}^{(\mathrm{n})} \mathrm{ds}+\int_{\mathrm{s}} \mathrm{~m}_{\mathrm{k}}^{(\mathrm{n})} \mathrm{ds}+\int_{\mathrm{s}} \rho \ell_{\mathrm{k}} \mathrm{ds}, \tag{9}
\end{equation*}
$$

where σ_{k} is the inertial spin, r_{m} is the position, $\mathrm{m}_{\mathrm{k}}^{(\mathrm{n})}$ is the surface couple, and ℓ_{k} is the body couple per unit mass.

Introducing the couple stress $\mathrm{m}_{\ell \mathrm{k}}$ as

$$
\begin{equation*}
\mathrm{m}_{\mathrm{k}}^{(\mathrm{n})}=\mathrm{m}_{\ell \mathrm{k}} \mathrm{n}_{\ell}, \mathbf{m}^{(\mathrm{n})}=\mathbf{n} \cdot \mathbf{m}, \tag{10}
\end{equation*}
$$

and applying the divergence theorem, we find

$$
\begin{equation*}
\int_{\mathrm{v}} \rho\left(\dot{\sigma}_{\mathrm{k}}+\varepsilon_{\mathrm{kmj}} \mathrm{r}_{\mathrm{m}} \dot{\mathrm{v}}_{\mathrm{j}}\right) \mathrm{dv}=\int_{\mathrm{v}}\left[\rho \varepsilon_{\mathrm{kmj}} \mathrm{r}_{\mathrm{m}} \mathrm{f}_{\mathrm{j}}+\left(\varepsilon_{\mathrm{kmj}} \mathrm{r}_{\mathrm{m}} \mathrm{t}_{\ell \mathrm{j}}\right)_{\ell \ell}+\mathrm{m}_{\ell \mathrm{k}, \ell}+\rho \ell_{\mathrm{k}}\right] \mathrm{dv} . \tag{11}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left(\varepsilon_{\mathrm{kmj}} \mathrm{r}_{\mathrm{m}} \mathrm{t}_{\ell \mathrm{j}}\right)_{\ell \ell}=\varepsilon_{\mathrm{kmj}} \mathrm{t}_{\mathrm{mj}}+\varepsilon_{\mathrm{kmj}} \mathrm{r}_{\mathrm{m}} \mathrm{t}_{\mathrm{kj}, \ell} . \tag{12}
\end{equation*}
$$

Taking the cross product of \mathbf{r} and equation (8), it follows that

$$
\begin{equation*}
\varepsilon_{\mathrm{kmj}} \mathrm{r}_{\mathrm{m}} \dot{\mathrm{v}}_{\mathrm{j}}=\rho \varepsilon_{\mathrm{kmj}} \mathrm{r}_{\mathrm{m}} \mathrm{f}_{\mathrm{j}}+\varepsilon_{\mathrm{kmj}} \mathrm{r}_{\mathrm{m}} \mathrm{t}_{\mathrm{j}, \ell, \ell} \tag{13}
\end{equation*}
$$

Using (12) and (13) in (11), we find

$$
\begin{equation*}
\left.\rho \dot{\sigma}_{\mathrm{k}}=\rho \ell_{\mathrm{k}}+\varepsilon_{\mathrm{kmj}} \mathrm{t}_{\mathrm{mj}}+\mathrm{m}_{\ell \mathrm{k}, \ell} . \quad \text { Local }\right) \tag{14}
\end{equation*}
$$

Equation (14) is the statement of local conservation of angular momentum for a polar media.

When

$$
\begin{equation*}
\sigma_{\mathrm{k}}=\ell_{\mathrm{k}}=\mathrm{m}_{\mathrm{k} \ell}=0, \tag{15}
\end{equation*}
$$

Equation (14) reduces to

$$
\begin{equation*}
\varepsilon_{\mathrm{kmj}} \mathrm{t}_{\mathrm{mj}}=0, \tag{16}
\end{equation*}
$$

i.e., the stress tensor must be symmetric for a nonpolar media.

Axiom 4: Principle of Conservation of Energy

Time rate of change of internal and kinetic energy is equal to the rate of work done by the external force and the net heat transferred to the body. That is

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{~K}+\mathrm{E})=\mathrm{W}+\mathrm{Q} \tag{17}
\end{equation*}
$$

Here, K is the kinetic energy, E is the internal energy, W is the rate of work done, and Q is the rate of heat transfer. Equation (17) may be restated as

$$
\begin{equation*}
\frac{d}{d t} \int_{v} \rho\left(e+\frac{1}{2} v_{k} v_{k}\right) d v=\int_{v} \rho v_{k} f_{k} d v+\int_{s} v_{k} \cdot t_{k}^{(n)} d s+\int_{s} q_{k} d s_{k}+\int_{v} \rho r d v, \tag{18}
\end{equation*}
$$

Using the divergence theorem, we find

$$
\begin{equation*}
\int_{\mathrm{v}} \rho\left(\dot{\mathrm{e}}+\mathrm{v}_{\mathrm{k}} \dot{\mathrm{v}}_{\mathrm{k}}\right) \mathrm{dv}=\int_{\mathrm{v}}\left(\rho \mathrm{v}_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}+\mathrm{v}_{\mathrm{k}} \mathrm{t}_{\ell \mathrm{k}, \ell}+\mathrm{t}_{\ell \mathrm{k}} \mathrm{v}_{\mathrm{k}, \ell}+\mathrm{q}_{\mathrm{k}, \mathrm{k}}+\rho \mathrm{r}\right) \mathrm{dv} . \tag{19}
\end{equation*}
$$

Taking the dot product of equation (8) with v_{k} and subtracting the result from (19), leads to the local form of the conservation of energy. That is

$$
\begin{equation*}
\rho \dot{\mathrm{e}}=\mathrm{t}_{\ell \mathrm{k}} \mathrm{v}_{\ell, \mathrm{k}}+\mathrm{q}_{\mathrm{k}, \mathrm{k}}+\rho \mathrm{r} . \quad \text { (Local) } \tag{20}
\end{equation*}
$$

In these equations, e is the internal energy density, q_{k} is the heat flux vector pointing outward, and r is the internal heat source per unit mass.

Axiom 5: Entropy Inequality (Clausius-Duhem)

Time rate of change of the entropy minus the net heat transferred divided by the temperature must be positive. That is,

$$
\begin{equation*}
\frac{d}{d t} \int_{v} \rho \eta d v-\int_{s} \frac{\mathrm{q}_{\mathrm{k}} \mathrm{n}_{\mathrm{k}}}{\mathrm{~T}} \mathrm{ds}-\int_{\mathrm{v}} \frac{\rho \mathrm{r}}{\mathrm{~T}} \mathrm{dv} \geq 0 \tag{21}
\end{equation*}
$$

where η is the entropy density and T is the temperature.
Inequality (21) may be restated as

$$
\begin{equation*}
\int_{v}\left(\rho \dot{\eta}-\left(\frac{q_{k}}{T}\right)_{, k}-\frac{\rho r}{T}\right) d v \geq 0 \tag{22}
\end{equation*}
$$

or

$$
\begin{equation*}
\rho \dot{\eta}-\left(\frac{q_{k}}{T}\right)_{, k}-\frac{\rho r}{T} \geq 0 \tag{23}
\end{equation*}
$$

In summary, the basic conservation laws in vector notation are:

$$
\begin{align*}
& \frac{\partial \rho}{\partial \mathrm{t}}+\nabla \cdot(\rho \mathbf{v})=0 \tag{24}\\
& \rho \frac{\mathrm{~d} \mathbf{v}}{\mathrm{dt}}=\rho \mathbf{f}+\nabla \cdot \mathbf{t}, \quad \mathbf{t}=\mathbf{t}^{\mathrm{T}} \tag{25}\\
& \rho \frac{\mathrm{de}}{\mathrm{dt}}=\mathbf{t}: \nabla \mathbf{v}+\nabla \cdot \mathbf{q}+\rho \mathrm{r} \tag{26}\\
& \rho \frac{\mathrm{~d} \eta}{\mathrm{dt}}-\nabla \cdot\left(\frac{\mathbf{q}}{\mathrm{T}}\right)-\frac{\rho \mathrm{r}}{\mathrm{~T}} \geq 0 \tag{27}
\end{align*}
$$

Continuum Thermodynamics and Constitutive Equations

Introducing the Helmholtz free energy function

$$
\begin{equation*}
\psi=\mathrm{e}-\mathrm{T} \eta, \tag{28}
\end{equation*}
$$

entropy inequality (27) may be restated as

$$
\begin{equation*}
\frac{\rho}{\mathrm{T}}(\dot{\mathrm{e}}-\dot{\mathrm{T}} \eta-\dot{\psi})-\left(\frac{\mathrm{q}_{\mathrm{k}}}{\mathrm{~T}}\right)_{, \mathrm{k}}-\frac{\rho \mathrm{r}}{\mathrm{~T}} \geq 0 . \tag{29}
\end{equation*}
$$

Here, we used

$$
\begin{equation*}
\dot{\psi}=\dot{\mathrm{e}}-\dot{\mathrm{T}} \eta-\dot{\mathrm{T}} \dot{\eta} \tag{30}
\end{equation*}
$$

to eliminate $\dot{\eta}$.
Using the energy equation (26) to eliminate $\dot{\mathrm{e}}$ in (29), we find

$$
\begin{equation*}
\frac{1}{\mathrm{~T}}\left[-\rho(\dot{\psi}+\eta \dot{\mathrm{T}})+\mathrm{t}_{\ell \mathrm{k}} \mathrm{v}_{\ell, \mathrm{k}}+\frac{\mathrm{q}_{\mathrm{k}} \mathrm{~T}_{, \mathrm{k}}}{\mathrm{~T}}\right] \geq 0 \tag{31}
\end{equation*}
$$

Inequality (31) is an alternative statement of the Clausius-Duhem inequality.

Constitutive Postulates

Assume that

$$
\begin{equation*}
\psi=\psi\left(\mathrm{T}, \rho, \mathrm{~d}_{\mathrm{k} \ell}, \mathrm{~T}_{\mathrm{k}}\right), \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{d}_{\mathrm{k} \ell}=\frac{1}{2}\left(\mathrm{v}_{\mathrm{k}, \ell}+\mathrm{v}_{\ell, \mathrm{k}}\right) \tag{33}
\end{equation*}
$$

is the deformation rate tensor. From (33), it follows that

$$
\begin{equation*}
\dot{\psi}=\frac{\partial \psi}{\partial \mathrm{T}} \dot{\mathrm{~T}}+\frac{\partial \psi}{\partial \rho} \dot{\rho}+\frac{\partial \psi}{\partial \mathrm{d}_{\mathrm{k} \ell}} \dot{\mathrm{~d}}_{\mathrm{k} \ell}+\frac{\partial \psi}{\partial \mathrm{T}_{\mathrm{l}, \mathrm{k}}} \dot{\overline{\mathrm{~T}_{\mathrm{k}}}} . \tag{34}
\end{equation*}
$$

By definition, the thermodynamic pressure is given as

$$
\begin{equation*}
\mathrm{p}=-\frac{\partial \psi}{\partial \rho^{-1}}=\rho^{2} \frac{\partial \psi}{\partial \rho} \tag{35}
\end{equation*}
$$

Continuity equation implies that

$$
\begin{equation*}
\dot{\rho}=-\rho d_{\mathrm{kk}} . \tag{36}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\frac{\partial \psi}{\partial \rho} \dot{\rho}=-\frac{\mathrm{p}}{\rho} \mathrm{~d}_{\mathrm{kk}} \tag{37}
\end{equation*}
$$

Using (34) and (37) in (31) and collecting terms, we find

$$
\begin{equation*}
\frac{1}{\mathrm{~T}}\left[-\rho\left(\frac{\partial \psi}{\partial \mathrm{T}}+\eta\right) \dot{\mathrm{T}}+\left(\mathrm{t}_{\mathrm{k} \ell}+\mathrm{p} \delta_{\mathrm{k} \ell}\right) \mathrm{d}_{\mathrm{k} \ell}-\rho \frac{\partial \psi}{\partial \mathrm{T}_{, \mathrm{k}}} \dot{\mathrm{~T}_{, \mathrm{k}}}-\rho \frac{\partial \psi}{\partial \mathrm{d}_{\mathrm{k} \ell}} \dot{\mathrm{~d}}_{\mathrm{k} \ell}+\frac{\mathrm{q}_{\mathrm{k}} \mathrm{~T}_{, \mathrm{k}}}{\mathrm{~T}}\right] \geq 0 \tag{38}
\end{equation*}
$$

Inequality (38) must hold for all independent variations of $\dot{\mathrm{T}}, \dot{\mathrm{T}_{, \mathrm{k}}}, \dot{\mathrm{d}}_{\mathrm{k} \ell}, \mathrm{d}_{\mathrm{k} \ell}$, and $\mathrm{T}_{, \mathrm{k}}$. Thus, It follows that

$$
\begin{align*}
& \eta=-\frac{\partial \psi}{\partial \mathrm{T}} \tag{39}\\
& \frac{\partial \psi}{\partial \mathrm{~T}_{, \mathrm{k}}}=\frac{\partial \psi}{\partial \mathrm{d}_{\mathrm{k} \ell}}=0 \tag{40}
\end{align*}
$$

and (38) reduces to

$$
\begin{equation*}
\left(\mathrm{t}_{\mathrm{k} \ell}+\mathrm{p} \delta_{\mathrm{k} \ell}\right) \mathrm{d}_{\mathrm{k} \ell}+\frac{\mathrm{q}_{\mathrm{k}} \mathrm{~T}_{, \mathrm{k}}}{\mathrm{~T}} \geq 0 \tag{41}
\end{equation*}
$$

Linear Constitutive Equations

The general linear constitutive equations for the stress tensor and the heat flux vector are given as

$$
\begin{align*}
& \mathrm{t}_{\mathrm{k} \ell}=-\mathrm{p} \delta_{\mathrm{k} \ell}+\mathrm{L}_{\mathrm{k} \ell \mathrm{ij}} \mathrm{~d}_{\mathrm{ij}}, \tag{42}\\
& \mathrm{q}_{\mathrm{k}}=\mathrm{L}_{\mathrm{kj}} \mathrm{~T}_{, \mathrm{j}}, \tag{43}
\end{align*}
$$

Subjected to constraints,

$$
\begin{equation*}
\mathrm{L}_{\mathrm{k} f \mathrm{fj}} \mathrm{~d}_{\mathrm{ij}} \mathrm{~d}_{\mathrm{k} \ell} \geq 0, \quad \mathrm{~L}_{\mathrm{k} \mathrm{j}} \mathrm{~T}_{, \mathrm{k}} \mathrm{~T}_{, \mathrm{j}} \geq 0 . \tag{44}
\end{equation*}
$$

Here, L_{k} fij and $L_{k j}$ are, respectively, a fourth order and a second order constant tensors.
For an isotropic fluid, \mathbf{L} 's must be isotropic tensors. The most general forms of isotropic tensors of fourth and second order are:

$$
\begin{align*}
& L_{k f i j}=\lambda \delta_{k \ell} \delta_{i j}+\mu\left(\delta_{k i} \delta_{f j}+\delta_{k j} \delta_{f i}\right)+\mu_{1}\left(\delta_{k i} \delta_{f j}-\delta_{k j} \delta_{f i}\right), \tag{45}\\
& \mathrm{L}_{\mathrm{k} \ell}=\kappa \delta_{\mathrm{k} \ell}, \tag{46}
\end{align*}
$$

where λ, μ, μ_{1}, and κ are the material constants that, in general, are functions of temperature.

Using (45) and (46) in (42) and (43) and noting that $\mathrm{d}_{\mathrm{k} \ell}$ is a symmetric tensor, we find

$$
\begin{align*}
& \mathrm{t}_{\mathrm{k} \ell}=\left(-\mathrm{p}+\lambda \mathrm{d}_{\mathrm{ij}}\right) \delta_{\mathrm{k} \ell}+2 \mu \mathrm{~d}_{\mathrm{k} \ell}, \tag{47}\\
& \mathrm{q}_{\mathrm{k}}=\kappa \mathrm{T}_{\mathrm{k}} . \tag{48}
\end{align*}
$$

These are Newton's laws of viscosity and Fourier's law of heat conductivity. Inequality (44) imposes the following constraints on the coefficients of viscosity and heat conductivity:

$$
\begin{equation*}
3 \lambda+2 \mu \geq 0, \mu \geq 0, \kappa \geq 0 \tag{49}
\end{equation*}
$$

Stokes assumed that

$$
\begin{equation*}
\lambda=-\frac{2}{3} \mu \tag{50}
\end{equation*}
$$

so that the pressure is the negative of average normal stresses at t point. Stokes assumption given by Equation (50) leads to $\mathrm{p}=-\frac{1}{3} \mathrm{t}_{\mathrm{kk}}$.

Navier-Stokes Equation

Using (47) in (25), we find

$$
\begin{equation*}
\rho \frac{d v_{k}}{d t}=-p_{\mathrm{k}}+\mu \mathrm{v}_{\mathrm{k}, \mathrm{jj}}+(\lambda+\mu) \mathrm{v}_{\mathrm{j}, \mathrm{jk}}+\rho \mathrm{f}_{\mathrm{k}} . \tag{51}
\end{equation*}
$$

For an incompressible fluid,

$$
\begin{equation*}
\nabla \cdot \mathbf{v}=0, \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho \frac{\mathrm{d} \mathbf{v}}{\mathrm{dt}}=-\nabla \mathrm{p}+\mu \nabla^{2} \mathbf{v}+\rho \mathbf{f} \tag{53}
\end{equation*}
$$

Equations (52) and (53) are four equations for determining four unknowns \mathbf{v}, p for an incompressible flow.

Energy Equation

Using Equation (48) (for a non-constant κ) in (26), we find

$$
\begin{equation*}
\rho \frac{\mathrm{de}}{\mathrm{dt}}=\nabla \cdot(\kappa \nabla \mathrm{T})+\mathrm{t}_{\mathrm{ij}} \mathrm{v}_{\mathrm{j}, \mathrm{i}}+\rho \mathrm{r} . \tag{54}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\mathrm{t}_{\mathrm{ij}} \mathrm{v}_{\mathrm{j}, \mathrm{i}}=-\mathrm{pv}_{\mathrm{k}, \mathrm{k}}+\Phi \tag{55}
\end{equation*}
$$

where the dissipation function is defined as

$$
\begin{equation*}
\Phi=\lambda \mathrm{v}_{\mathrm{k}, \mathrm{k}} \mathrm{v}_{\mathrm{i}, \mathrm{i}}+2 \mu \mathrm{~d}_{\mathrm{ij}} \mathrm{v}_{\mathrm{j}, \mathrm{i}} . \tag{56}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\mathrm{pv}_{\mathrm{k}, \mathrm{k}}=-\frac{\mathrm{p}}{\rho} \frac{\mathrm{~d} \rho}{\mathrm{dt}}=\rho \frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\mathrm{p}}{\rho}\right)-\frac{\mathrm{dp}}{\mathrm{dt}} \tag{57}
\end{equation*}
$$

and using (56) and (57) in Equation (54), we find

$$
\begin{equation*}
\rho \frac{\mathrm{dh}}{\mathrm{dt}}=\frac{\mathrm{dp}}{\mathrm{dt}}+\nabla \cdot(\kappa \nabla \mathrm{T})+\Phi+\rho \mathrm{r} \tag{58}
\end{equation*}
$$

where

$$
\begin{equation*}
h=e+\frac{p}{\rho} \tag{59}
\end{equation*}
$$

is the enthalpy.
For flows with constant properties, assuming the perfect gas relationship

$$
\begin{equation*}
\mathrm{dh}=\mathrm{c}_{\mathrm{P}} \mathrm{dT}, \mathrm{de}=\mathrm{c}_{\mathrm{v}} \mathrm{dT}, \tag{60}
\end{equation*}
$$

where c_{p} and c_{v} are heat capacities at constant pressure and volume, we find

$$
\begin{equation*}
\rho \mathrm{c}_{\mathrm{P}} \frac{\mathrm{dT}}{\mathrm{dt}}=\frac{\mathrm{dP}}{\mathrm{dt}}+\kappa \nabla^{2} \mathrm{~T}+\Phi+\rho \mathrm{r} . \tag{61}
\end{equation*}
$$

For incompressible fluids, the energy equation becomes

$$
\begin{equation*}
\rho c_{v} \frac{\mathrm{dT}}{\mathrm{dt}}=\kappa \nabla^{2} \mathrm{~T}+\Phi+\rho \mathrm{r}, \tag{62}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi=\mu\left(v_{i, j}+v_{\mathrm{j}, \mathrm{i}}\right) \mathrm{v}_{\mathrm{j}, \mathrm{i}} \tag{63}
\end{equation*}
$$

Density Change Due to Temperature Variation

For incompressible fluids, Boussinesq assumed that

$$
\begin{equation*}
\rho=\rho_{0}\left(1-\beta\left(\mathrm{T}-\mathrm{T}_{0}\right)\right), \beta=\text { const. } \tag{64}
\end{equation*}
$$

When the body flow is only due to gravity, we have

$$
\begin{equation*}
\rho \mathbf{f}=-\rho_{0} g \mathbf{k}\left[1-\beta\left(\mathrm{T}-\mathrm{T}_{0}\right)\right] . \tag{65}
\end{equation*}
$$

Using (65) in (53), we find

$$
\begin{equation*}
\rho_{0} \frac{\mathrm{~d} \mathbf{v}}{\mathrm{dt}}=-\nabla \mathrm{p}+\mu \nabla^{2} \mathbf{v}-\rho_{0} \mathrm{~g}\left[1-\beta\left(\mathrm{T}-\mathrm{T}_{0}\right)\right] \mathbf{k} . \tag{66}
\end{equation*}
$$

or

$$
\begin{equation*}
\rho_{0} \frac{\mathrm{~d} \mathbf{v}}{\mathrm{dt}}=-\nabla \hat{\mathrm{P}}+\mu \nabla^{2} \mathbf{v}-\rho_{0} g \beta\left(\mathrm{~T}-\mathrm{T}_{0}\right) \mathbf{k} \tag{67}
\end{equation*}
$$

where we have defined excess pressure beyond hydrostatics as

$$
\begin{equation*}
\hat{\mathrm{P}}=\mathrm{p}+\rho_{0} \mathrm{gz} \tag{68}
\end{equation*}
$$

For a general body force, we find

$$
\begin{equation*}
\rho_{0} \frac{d \mathbf{v}}{\mathrm{dt}}=-\nabla \hat{\mathrm{P}}+\mu \nabla^{2} \mathbf{v}-\rho_{0} \beta\left(\mathrm{~T}-\mathrm{T}_{0}\right) \mathbf{f} . \tag{69}
\end{equation*}
$$

Dimensionless Equations

It is advantageous to express the governing equations in nondimensional forms. We introduce dimensionless quantities:

$$
\begin{align*}
& x_{i}^{*}=\frac{x_{i}}{L}, \mathbf{v}^{*}=\frac{\mathbf{v}}{U_{\infty}}, \mathrm{t}^{*}=\frac{\mathrm{t} \mathrm{U}_{\infty}}{L}, \rho^{*}=\frac{\rho}{\rho_{0}}, \tag{70}\\
& P^{*}=\frac{\hat{\mathrm{P}}-\mathrm{P}_{\infty}}{\rho_{0} U_{\infty}^{2}}, T^{*}=\frac{T-T_{0}}{\Delta T_{0}}, \mathbf{f}^{*}=\frac{\mathbf{f}}{\mathrm{g}} \tag{71}
\end{align*}
$$

where $\mathrm{L}, \mathrm{U}_{\infty}, \rho_{0}$ and T_{0} are length, velocity, density and temperature scales. Using (70), the equations of motion and energy transport in nondimensional form become

$$
\begin{align*}
& \frac{\partial \rho^{*}}{\partial \mathrm{t}^{*}}+\nabla^{*} \cdot\left(\rho^{*} \mathbf{v}^{*}\right)=0, \tag{72}\\
& \rho^{*} \frac{\mathrm{~d} \mathbf{v}^{*}}{\mathrm{dt}^{*}}=-\nabla^{*} \mathrm{P}^{*}+\frac{1}{\operatorname{Re}} \nabla^{* 2} \mathbf{v}^{*}-\frac{\mathrm{Gr}}{\mathrm{Re}^{2}} \mathrm{~T}^{*} \mathbf{f}^{*}, \tag{73}\\
& \rho^{*} \frac{\mathrm{dT}}{\mathrm{dt}^{*}}=\mathrm{Ec} \frac{\mathrm{dP}^{*}}{\mathrm{dt}^{*}}+\frac{1}{\operatorname{Re} \operatorname{Pr}} \nabla^{* 2} \mathrm{~T}^{*}+\frac{\mathrm{Ec}}{\operatorname{Re}} \Phi^{*} \tag{74}
\end{align*}
$$

Here, we have defined the following dimensionless groups:

$$
\begin{align*}
& \text { Reynolds number }=\operatorname{Re}=\frac{\rho_{0} U_{\infty} \mathrm{L}}{\mu}, \tag{75}\\
& \text { Prandtl number }=\operatorname{Pr}=\frac{\mu c_{\mathrm{P}}}{\kappa}, \tag{76}
\end{align*}
$$

Eckert number: $\mathrm{Ec}=\frac{\mathrm{U}_{\infty}^{2}}{\mathrm{c}_{\mathrm{P}} \Delta \mathrm{T}_{0}}$,

Grashof number: $\mathrm{Gr}=\frac{\mathrm{g} \beta \rho_{0}^{2} L^{3} \Delta \mathrm{~T}_{0}}{\mu^{2}}$

