
 
 

CONSERVATION LAWS 
 
Axiom 1: Principle of Conservation of Mass 
 
 Mass is invariant under the motion.  That is, 
 

 0dv
dt
d

v

=ρ∫ .                (1) 

 
Using the Reynolds transport theorem, we find 
 

 0dv
t sv

=⋅ρ+ρ
∂
∂

∫∫ dsv  (Global)            (2) 

 
or 
 

 0dv)v(
tv

k,k =⎟
⎠
⎞

⎜
⎝
⎛ ρ+
∂
ρ∂

∫ .              (3) 

 
That leads to the equation of continuity 
 

 0)v(
t k,k =ρ+
∂
ρ∂ . (Local)              (4) 

 
 
Axiom 2: Principle of Balance of Linear Momentum 
 
 The time rate of change of momentum is equal to the resultant force acting on the 
body.  That is 
 

 ∫∫∫ +ρ=ρ
s

)n(
k

v
k

v
k dstdvfdvv

dt
d ,             (5) 

 
where  is the acceleration of the body force and  is the surface traction force. Using 
the Reynolds transport equation, we find 

kf )n(
kt

 

 ∫∫∫∫ +ρ=ρ+ρ
∂
∂

s

)n(
k

v
k

s
jjk

v
k dstdvfdsvvdvv

t
. (Global)          (6) 

 
Introducing the stress tensor  as kt l
 
 , ,              (7) ll ntt k

)n(
k = tnt ⋅=)n(
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the last term in (6) may be restated as 
 
 . ∫∫ =

v
,k

s
k dvtdsnt llll

 

Using the divergence theorem in the second term of (6) or noting that 0)d(
dt
d

=ρ v  in (5), 

we find 
 

 ∫ =−ρ−ρ
v

,kk
k 0dv)tf

dt
dv( ll . 

 
This implies that 
 

 ll ,kk
k tf

dt
dv

+ρ=ρ . (Local)              (8) 

 
 
Axiom 3: Principle of Balance and Angular Momentum 
 
 Time rate of change of angular momentum about a fixed point is equal to the 
resultant moments about that point.  That is 
 

∫ ∫∫∫∫ ρ++ε+ρε=ε+σρ
s s

k
)n(

k
S

)n(
jmkmj

v
jmkmj

v
jmkmjk dsdsmdstrdvfrdv)vr(

dt
d

l ,  (9) 

  
where  is the inertial spin,  is the position,  is the surface couple, and  is the 
body couple per unit mass. 

kσ mr
)n(

km kl

 
Introducing the couple stress  as km l

 
 , ,            (10) ll nmm k

)n(
k = mnm ⋅=)n(

 
and applying the divergence theorem, we find 
 
 

 [ ]∫∫ ρ++ε+ρε=ε+σρ
v

k,k,jmkmjjmkmj
v

jmkmjk dvm)tr(frdv)vr( l&& llll .      (11) 

 
Note that 
 
 .                      (12) llll ,jmkmjmjkmj,jmkmj trt)tr( ε+ε=ε
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Taking the cross product of  and equation (8), it follows that r

 
 .                      (13) ll& ,jmkmjjmkmjjmkmj trfrvr ε+ρε=ε
 
Using (12) and (13) in (11), we find 
 
 . (Local)                      (14) lll& ,kmjkmjkk mt +ε+ρ=σρ
 
Equation (14) is the statement of local conservation of angular momentum for a polar 
media.  
 

When 
 
 0 ,             (15) mkkk ===σ ll

 
Equation (14) reduces to 
 
 ,              (16) 0t mjkmj =ε
 
i.e., the stress tensor must be symmetric for a nonpolar media. 
 
 
Axiom 4: Principle of Conservation of Energy 
 
 Time rate of change of internal and kinetic energy is equal to the rate of work 
done by the external force and the net heat transferred to the body.  That is 
 

 QW)EK(
dt
d

+=+ .             (17) 

 
Here, K is the kinetic energy, E is the internal energy, W is the rate of work done, and Q 
is the rate of heat transfer.  Equation (17) may be restated as 
 

 ∫∫∫∫∫ ρ++⋅+ρ=⎟
⎠
⎞

⎜
⎝
⎛ +ρ

vs
kk

s

)n(
kk

v
kk

v
kk rdvdsqdstvdvfvdvvv

2
1e

dt
d ,      (18) 

 
Using the divergence theorem, we find 
 

 .       (19) ( ) ∫∫ ρ++++ρ=+ρ
v

k,k,kk,kkkk
v

kk dv)rqvttvfv(dvvve llll&&

 
Taking the dot product of equation (8) with  and subtracting the result from 

(19), leads to the local form of the conservation of energy.  That is 
kv
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 . (Local)           (20) rqvte k,kk,k ρ++=ρ ll

&

 
In these equations, is the internal energy density,  is the heat flux vector pointing 
outward, and 

e kq
r  is the internal heat source per unit mass. 

 
 
Axiom 5: Entropy Inequality (Clausius-Duhem) 
 
 Time rate of change of the entropy minus the net heat transferred divided by the 
temperature must be positive. That is, 
 

 0dv
T
rds

T
nqdv

dt
d

vS

kk

v

≥
ρ

−−ρη ∫∫∫ ,           (21) 

 
where η  is the entropy density and  is the temperature. T
 
 Inequality (21) may be restated as 
 

 0dv
T
r)

T
q(

v
k,

k ≥⎟
⎠
⎞

⎜
⎝
⎛ ρ

−−ηρ∫ & ,                       (22) 

 
or 
 

 0
T
r)

T
q( k,

k ≥
ρ

−−ηρ & .  (Local)           (23) 

 
In summary, the basic conservation laws in vector notation are: 

 

 0)(
t

=ρ⋅∇+
∂
ρ∂ v              (24) 

 

 tfv
⋅∇+ρ=ρ

dt
d ,              (25) Ttt =

 

 r:
dt
de

ρ+⋅∇+∇=ρ qvt             (26) 

 

 0
T
r)

T
(

dt
d

≥
ρ

−⋅∇−
η

ρ
q             (27) 
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Continuum Thermodynamics and Constitutive Equations 
 
 Introducing the Helmholtz free energy function 
 
 ,              (28) η−=ψ Te
 
entropy inequality (27) may be restated as 
 

 0
T
r)

T
q()Te(

T k,
k ≥

ρ
−−ψ−η−

ρ
&&& .           (29) 

 
Here, we used 
 
              (30) η−η−=ψ &&&&& TTe
 
to eliminate η . &

 
 Using the energy equation (26) to eliminate e  in (29), we find &
 

 0
T
Tq

vt)T(
T
1 k,k

k,k ≥⎥
⎦

⎤
⎢
⎣

⎡
++η+ψρ− ll

&&           (31) 

 
Inequality (31) is an alternative statement of the Clausius-Duhem inequality. 
 
 
Constitutive Postulates 
 
Assume that 
 
 ,             (32) )T,d,,T( k,klρψ=ψ
where 
 

 )vv(
2
1d k,,kk lll +=              (33) 

 
is the deformation rate tensor.  From (33), it follows that 
 

 
•

∂
ψ∂

+
∂
ψ∂

+ρ
ρ∂
ψ∂

+
∂
ψ∂

=ψ k,
k,

k
k

T
T

d
d

T
T l

l

&&&& .          (34) 

 
By definition, the thermodynamic pressure is given as 
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ρ∂
ψ∂

ρ=
ρ∂
ψ∂

−= −
2

1p .             (35) 

 
Continuity equation implies that 
 
 .              (36) kkdρ−=ρ&
 
Thus, 
 

 kkdp
ρ

−=ρ
ρ∂
ψ∂
& .             (37) 

 
Using (34) and (37) in (31) and collecting terms, we find 

 

 0
T
Tq

d
d

T
T

d)pt(T)
T

(
T
1 k,k

k
k

k,
k,

kkk ≥
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

∂
ψ∂

ρ−
∂
ψ∂

ρ−δ++η+
∂
ψ∂

ρ−
•

l

l

lll
&&           (38) 

 

Inequality (38) must hold for all independent variations of T , &
•

k,T , , , and .  
Thus, It follows that 

l
&

kd lkd k,T

 

 
T∂
ψ∂

−=η ,              (39) 

 

 0
dT kk,

=
∂
ψ∂

=
∂
ψ∂

l

,             (40) 

 
and (38) reduces to 
 

 0
T

Tq
d)pt( k,k

kkk ≥+δ+ lll             (41) 

 
 
Linear Constitutive Equations 
 
 The general linear constitutive equations for the stress tensor and the heat flux 
vector are given as 
 
 ,             (42) ijijkkk dLpt lll +δ−=
 
 ,                         (43) j,kjk TLq =
 
Subjected to constraints, 
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 ,  .           (44) 0ddL kijijk ≥ll 0TTL j,k,kj ≥
 
Here,  and  are, respectively, a fourth order and a second order constant tensors. ijkL l kjL
 
 For an isotropic fluid, 's must be isotropic tensors.  The most general forms of 
isotropic tensors of fourth and second order are: 

L

 
 )δδδ(δ)δδδµ(δδλδL ikjjki1ikjjkiijkijk llllll −µ+++= ,         

(45) 
 

 ,                         (46) ll kkL κδ=
 
where λ , µ , , and  are the material constants that, in general, are functions of 
temperature. 

1µ κ

 
Using (45) and (46) in (42) and (43) and noting that  is a symmetric tensor, we 

find 
lkd

 
 lll kkiik d2)dp(t µ+δλ+−= ,            (47) 
 
 .              (48) k,k Tq κ=
 
These are Newton's laws of viscosity and Fourier's law of heat conductivity.  Inequality 
(44) imposes the following constraints on the coefficients of viscosity and heat 
conductivity: 
 
 , , .            (49) 023 ≥µ+λ 0≥µ 0≥κ
 

Stokes assumed that 
 

 µ−=λ
3
2               (50) 

 
so that the pressure is the negative of average normal stresses at t point. Stokes 

assumption given by Equation (50) leads to kkt
3
1p −= . 

 
Navier-Stokes Equation 
 

Using (47) in (25), we find 
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 kjk,jjj,kk,
k fv)(vp

dt
dv

ρ+µ+λ+µ+−=ρ .          (51) 

 
For an incompressible fluid, 
 
 ,              (52) 0=⋅∇ v
 
and 
 

 fvv
ρ+∇µ+−∇=ρ 2p

dt
d .            (53) 

 
Equations (52) and (53) are four equations for determining four unknowns , p  for an 
incompressible flow. 

v

 
 
Energy Equation 
 

Using Equation (48) (for a non-constant κ )  in (26), we find 
 

 rvt)T(
dt
de

i,jij ρ++∇κ⋅∇=ρ .           (54) 

 
Noting that 
 
 ,                        (55) Φ+−= k,ki,jij pvvt
 
where the dissipation function is defined as 
 
 .            (56) i,jiji,ik,k vd2vv µ+λ=Φ
 
Noting that 
 

 
dt
dp)p(

dt
d

dt
dppv k,k −

ρ
ρ=

ρ
ρ

−=            (57) 

 
and using (56) and (57) in Equation (54), we find 
 

 r)T(
dt
dp

dt
dh

ρ+Φ+∇κ⋅∇+=ρ ,           (58) 

 
where 
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ρ

+=
peh               (59) 

 
is the enthalpy. 
 
 For flows with constant properties, assuming the perfect gas relationship 
 
 , ,            (60) dTcdh P= dTcde v=
 
where  and  are heat capacities at constant pressure and volume, we find Pc vc
 

 rT
dt
dP

dt
dTc 2

P ρ+Φ+∇κ+=ρ .           (61) 

 
For incompressible fluids, the energy equation becomes 
 

 rT
dt
dTc 2

v ρ+Φ+∇κ=ρ ,                       (62) 

 
where 
 
              (63) i,ji,jj,i v)vv( +µ=Φ

 
 
Density Change Due to Temperature Variation 
 
 For incompressible fluids, Boussinesq assumed that 
 
 , ))TT(1( 00 −β−ρ=ρ .const=β            (64) 
 
When the body flow is only due to gravity, we have 
 
 .            (65) [ )TT(1g 00 −β−ρ−=ρ kf ]
 
Using (65) in (53), we find 
 

 [ ]kvv )TT(1gp
dt
d

00
2

0 −β−ρ−∇µ+−∇=ρ .          (66) 

 
or 
 

 kvv )TT(gP̂
dt
d

00
2

0 −βρ−∇µ+−∇=ρ ,          (67) 
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where we have defined excess pressure beyond hydrostatics as 
 
 .              (68) gzpP̂ 0ρ+=
 
For a general body force, we find 
 

 fvv )TT(P̂
dt
d

00
2

0 −βρ−∇µ+−∇=ρ .          (69) 

 
 
Dimensionless Equations 
 

It is advantageous to express the governing equations in nondimensional forms.  
We introduce dimensionless quantities: 
 

 
L
xx i*

i = , 
∞

=
U

* vv , 
L

tUt* ∞= , 
0

*

ρ
ρ

=ρ ,          (70) 

 

 2
0

*

U
PP̂P
∞

∞

ρ
−

= , 
0

0*

T
TT

T
∆
−

= , 
g

* ff =                       (71) 

 
where L, , and  are length, velocity, density and temperature scales.  Using (70), 
the equations of motion and energy transport in nondimensional form become 

∞U 0ρ 0T

 

 0)(
t

***
*

*

=ρ⋅∇+
∂
ρ∂ v ,            (72) 

 

 **
2

*2***
*

*
* T

Re
Gr

Re
1P

dt
d fvv

−∇+−∇=ρ ,          (73) 

 

 **2*
*

*

*

*
*

Re
EcT

PrRe
1

dt
dPEc

dt
dT

Φ+∇+=ρ .          (74) 

 
Here, we have defined the following dimensionless groups: 
 

 Reynolds number = 
µ

ρ
= ∞LU

Re 0 ,           (75) 

 

 Prandtl number = 
κ
µ

= PcPr ,            (76) 
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 Eckert number: 
0P

2

Tc
UEc
∆

= ∞ ,                       (77) 

 

 Grashof number: 2
0

32
0 TLg

Gr
µ

∆βρ
=            (78) 
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