CONTINUUM FLUID MECHANICS

Motion

A body is a collection of material particles. The point \mathbf{X} is a material point and it is the position of the material particles at time zero.

Definition: A one-to-one one-parameter mapping

$$
\mathbf{x}=\mathbf{x}(\mathbf{X}, \mathrm{t})
$$

is called motion. The inverse

$$
\mathbf{X}=\mathbf{X}(\mathbf{x}, \mathrm{t})
$$

Figure 1. Schematic of motion.
is the inverse motion. X_{k} are referred to as the material coordinates of particle \mathbf{x}, and \mathbf{x} is the spatial point occupied by \mathbf{X} at time t .

Theorem: The inverse motion exists if the Jacobian, J of the transformation is nonzero. That is

$$
\mathrm{J}=\operatorname{det}\left|\frac{\partial \mathbf{x}}{\partial \mathbf{X}}\right|=\operatorname{det}\left|\frac{\partial \mathrm{x}_{\mathrm{k}}}{\partial \mathrm{X}_{\mathrm{K}}}\right| \neq 0 .
$$

This is the statement of the fundamental theorem of calculus.
Definition: Streamlines are the family of curves tangent to the velocity vector field at time t.

Given a velocity vector field \mathbf{v}, streamlines are governed by the following equations:

$$
\frac{\mathrm{dx}_{1}}{\mathrm{v}_{1}}=\frac{\mathrm{dx}_{2}}{\mathrm{v}_{2}}=\frac{\mathrm{dx}_{3}}{\mathrm{v}_{3}} \quad \text { for a given } \mathrm{t} .
$$

Definition: The streak line of point \mathbf{x}^{0} at time t is a line, which is made up of material points, which have passed through point \mathbf{x}^{0} at different times $\tau \leq t$.

Given a motion $\mathrm{X}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}}(\mathbf{X}, \mathrm{t})$ and its inverse $\mathrm{X}_{\mathrm{K}}=\mathrm{X}_{\mathrm{K}}(\mathbf{x}, \mathrm{t})$, it follows that the material particle X_{k}^{0} will pass through the spatial point \mathbf{x}^{0} at time τ. i.e.,

$$
X_{k}^{0}=X_{k}^{0}\left(\mathbf{x}^{0}, \tau\right) .
$$

Thus, the equation for the streak line of \mathbf{x}^{0} at time t is given by

$$
\mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}\left(\mathbf{X}^{0}\left(\mathbf{x}^{0}, \tau\right), \mathrm{t}\right) \quad \text { for fixed } t
$$

Deformation Rate Tensors

Suppose a motion $\mathbf{x}=\mathbf{x}(\mathbf{X}, \mathrm{t})$ is given.

Definition: Deformation Gradient

$$
\begin{equation*}
\mathrm{dx}_{\mathrm{k}}=\frac{\partial \mathrm{x}_{\mathrm{k}}}{\partial \mathrm{x}_{\mathrm{K}}} \mathrm{dx}_{\mathrm{K}}=\mathrm{x}_{\mathrm{k}, \mathrm{~K}} \mathrm{~d} \mathrm{X}_{\mathrm{K}} . \tag{1}
\end{equation*}
$$

$\mathrm{X}_{\mathrm{k}, \mathrm{K}}=\frac{\partial \mathrm{x}_{\mathrm{k}}}{\partial \mathrm{X}_{\mathrm{K}}}$ is referred to as the deformation gradient tensor.
$X_{K, k}=\frac{\partial X_{K}}{\partial \mathrm{x}_{\mathrm{k}}}$ is the (inverse) deformation gradient tensor.

Definition: Deformation Tensors
An element of arc in the deformed body is given as

$$
\begin{equation*}
\mathrm{ds}^{2}=\mathrm{dx}_{\mathrm{k}} \mathrm{dx}_{\ell} \delta_{\mathrm{k} \ell} . \tag{2}
\end{equation*}
$$

The distance from the origin in the un-deformed body is given by

$$
\begin{equation*}
\mathrm{dS}^{2}=\mathrm{dX}_{\mathrm{K}} \mathrm{X}_{\mathrm{L}} \delta_{\mathrm{KL}} \tag{3}
\end{equation*}
$$

Using the deformation gradient, (1) may be restated as

$$
\begin{equation*}
\mathrm{ds}^{2}=\mathrm{X}_{\mathrm{k}, \mathrm{~K}} \mathrm{dX}_{\mathrm{K}} \mathrm{X}_{\ell, \mathrm{L}} \mathrm{dX}_{\mathrm{L}} \delta_{\mathrm{kl}}=\mathrm{C}_{\mathrm{KL}} \mathrm{dX}_{\mathrm{K}} \mathrm{X}_{\mathrm{L}}, \tag{4}
\end{equation*}
$$

where $\mathrm{C}_{\mathrm{KL}}=\delta_{\mathrm{kl}} \mathrm{x}_{\mathrm{k}, \mathrm{K}} \mathrm{X}_{\ell, \mathrm{L}}$ is the Green deformation tensor.
Similarly, (3) may be rewritten as

$$
\begin{equation*}
\mathrm{dS}^{2}=\mathrm{X}_{\mathrm{K}, \mathrm{k}} \mathrm{X}_{\mathrm{L}, \ell} \delta_{\mathrm{KL}} \mathrm{dx}_{\mathrm{k}} \mathrm{dx}_{\ell}=\mathrm{c}_{\mathrm{k} \ell} \mathrm{dx}_{\mathrm{k}} \mathrm{dx}_{\ell}, \tag{5}
\end{equation*}
$$

where $\mathrm{c}_{\mathrm{kl}}=\mathrm{X}_{\mathrm{K}, \mathrm{k}} \mathrm{X}_{\mathrm{L}, \ell} \delta_{\mathrm{KL}}$ is the Cauchy deformation tensor.

Definition: Strain Tensors

The change in the square of arc length during the deformation is given by

$$
\begin{equation*}
\mathrm{ds}^{2}-\mathrm{dS}^{2}=\left(\mathrm{C}_{\mathrm{KL}}-\delta_{\mathrm{KL}}\right) \mathrm{dX}_{\mathrm{K}} \mathrm{dX}_{\mathrm{L}}=2 \mathrm{E}_{\mathrm{KL}} \mathrm{dX}_{\mathrm{K}} \mathrm{dX}_{\mathrm{L}}, \tag{6}
\end{equation*}
$$

Here, we introduced the Lagrangian strain tensor

$$
\begin{equation*}
2 \mathrm{E}_{\mathrm{KL}}=\mathrm{C}_{\mathrm{KL}}-\delta_{\mathrm{KL}} . \tag{7}
\end{equation*}
$$

Similarly, (6) may be restated as

$$
\begin{equation*}
\mathrm{ds}^{2}-\mathrm{dS}^{2}=\left(\delta_{\mathrm{kl}}-\mathrm{c}_{\mathrm{kl}}\right) \mathrm{dx}_{\mathrm{k}} \mathrm{dx}_{\ell}=2 \mathrm{e}_{\mathrm{k} \ell} \mathrm{dx}_{\mathrm{k}} \mathrm{dx}_{\ell}, \tag{8}
\end{equation*}
$$

where the Eulerian strain tensor is defined as

$$
\begin{equation*}
2 \mathrm{e}_{\mathrm{k} \ell}=\delta_{\mathrm{k} \ell}-\mathrm{c}_{\mathrm{k} \ell} . \tag{9}
\end{equation*}
$$

Partial and Total Time Derivatives

Let A be any scalar or tensor quantity. The partial time derivative is defined as

$$
\begin{equation*}
\frac{\partial \mathrm{A}}{\partial \mathrm{t}}=\left.\frac{\partial \mathrm{A}}{\partial \mathrm{t}}\right|_{\mathrm{x}} . \tag{10}
\end{equation*}
$$

The material derivative (total time derivative) is defined as

$$
\begin{equation*}
\frac{\mathrm{dA}}{\mathrm{dt}}=\left.\frac{\partial \mathrm{A}}{\partial \mathrm{t}}\right|_{\mathrm{x}}=\frac{\partial \mathrm{A}}{\partial \mathrm{t}}+\left.\frac{\partial \mathrm{A}}{\partial \mathrm{x}_{\mathrm{i}}} \frac{\partial \mathrm{x}_{\mathrm{i}}}{\partial \mathrm{t}}\right|_{\mathrm{x}} . \tag{11}
\end{equation*}
$$

Definition: Velocity

$$
\begin{equation*}
\mathrm{v}_{\mathrm{i}}=\left.\frac{\partial \mathrm{x}_{\mathrm{i}}}{\partial \mathrm{t}}\right|_{\mathrm{x}}=\frac{\mathrm{dx}}{\mathrm{i}}{ }_{\mathrm{dt}}=\dot{\mathrm{x}}_{\mathrm{i}} . \tag{12}
\end{equation*}
$$

Definition: Acceleration

$$
\begin{equation*}
\mathrm{a}_{\mathrm{i}}=\frac{\mathrm{dv}}{\mathrm{i}} \mathrm{dt}=\frac{\partial \mathrm{v}_{\mathrm{i}}}{\partial \mathrm{t}}+\mathrm{v}_{\mathrm{j}} \frac{\partial \mathrm{v}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}} \tag{13}
\end{equation*}
$$

Definition: Path lines

The curve in space along which the material point \mathbf{x} travels is referred to as the path line of the material particle \mathbf{X}.

The equation for the path line of \mathbf{x} is

$$
\begin{equation*}
\mathbf{x}=\mathbf{x}(\mathbf{X}, \mathrm{t}) \text { for fixed } \mathbf{X} . \tag{14}
\end{equation*}
$$

If the velocity field is known, then equations

$$
\begin{equation*}
\frac{\mathrm{dx}_{\mathrm{i}}}{\mathrm{dt}}=\mathrm{v}_{\mathrm{i}}(\mathbf{x}, \mathrm{t}) \text { for } \mathrm{i}=1,2,3 \tag{15}
\end{equation*}
$$

must be solved for evaluating the path lines.

Deformation Rate Tensor

Material derivatives of dx_{k} and deformation gradients are given as

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{dx}_{\mathrm{k}}\right)=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{x}_{\mathrm{k}, \mathrm{~K}} \mathrm{dX}_{\mathrm{K}}\right)=\mathrm{v}_{\mathrm{k}, \mathrm{~K}} \mathrm{~d} \mathrm{X}_{\mathrm{K}}=\mathrm{v}_{\mathrm{k}, \ell} \mathrm{dx}_{\ell} \tag{16}\\
& \frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{x}_{\mathrm{k}, \mathrm{~K}}\right)=\frac{\partial}{\partial \mathrm{X}_{\mathrm{K}}} \frac{\mathrm{dx}_{\mathrm{k}}}{\mathrm{dt}}=\mathrm{v}_{\mathrm{k}, \mathrm{~K}}=\mathrm{v}_{\mathrm{k}, \ell} \mathrm{X}_{\ell, \mathrm{K}} \tag{17}
\end{align*}
$$

Theorem: The material derivative of the square of the arc length is given by

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{ds}^{2}\right)=2 \mathrm{~d}_{\mathrm{k} \ell} \mathrm{dx}_{\mathrm{k}} \mathrm{dx}_{\ell} \tag{18}
\end{equation*}
$$

where $d_{k \ell}=\frac{1}{2}\left(\mathrm{v}_{\mathrm{k}, \ell}+\mathrm{v}_{\ell, \mathrm{k}}\right)$ is the Eulerian deformation rate tensor.

Proof:

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{ds}^{2}\right)=\frac{\mathrm{d}}{\mathrm{dt}}\left(\delta_{\mathrm{k} \ell} \mathrm{dx}_{\mathrm{k}} \mathrm{dx}_{\ell}\right)=\delta_{\mathrm{k} \ell}\left(\frac{\mathrm{dx}_{\mathrm{k}}}{\mathrm{dt}} \mathrm{dx}_{\ell}+\mathrm{dx}_{\mathrm{k}} \frac{\mathrm{dx}_{\ell}}{\mathrm{dt}}\right)
$$

Now using (16), we find

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{ds}^{2}\right)=\delta_{\mathrm{k} \ell}\left(\mathrm{v}_{\mathrm{k}, \mathrm{~m}} \mathrm{dx}_{\mathrm{m}} \mathrm{dx}_{\ell}+\mathrm{v}_{\ell, \mathrm{m}} \mathrm{dx}_{\mathrm{m}} \mathrm{dx}_{\mathrm{k}}\right)=\mathrm{v}_{\mathrm{k}, \mathrm{~m}} \mathrm{dx}_{\mathrm{m}} \mathrm{dx}_{\mathrm{k}}+\mathrm{v}_{\ell, \mathrm{m}} \mathrm{dx}_{\mathrm{m}} \mathrm{dx}_{\ell} . \\
=\left(\mathrm{v}_{\mathrm{k}, \ell}+\mathrm{v}_{\ell, \mathrm{k}}\right) \mathrm{dx}_{\mathrm{k}} \mathrm{dx}_{\ell}=2 \mathrm{~d}_{\mathrm{k} \ell} \mathrm{dx}_{\mathrm{k}} \mathrm{dx} \ell
\end{gathered}
$$

Relationships between Deformation Rate Tensors and Deformation Strain Tensors

From (4), recall that $\mathrm{ds}^{2}=\mathrm{C}_{\mathrm{KL}} \mathrm{dX}_{\mathrm{K}} \mathrm{dX}_{\mathrm{L}}$. Taking the material derivative, we find

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{ds}^{2}\right)=\dot{\mathrm{C}}_{\mathrm{KL}} \mathrm{dX}_{\mathrm{K}} \mathrm{dX} \mathrm{X}_{\mathrm{L}}=\dot{\mathrm{C}}_{\mathrm{KL}} \mathrm{X}_{\mathrm{K}, \mathrm{k}} \mathrm{X}_{\mathrm{L}, \ell} \mathrm{dx}_{\mathrm{k}} \mathrm{dx}_{\ell} \tag{19}
\end{equation*}
$$

Equation (18) implies that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{ds}^{2}\right)=2 \mathrm{~d}_{\mathrm{k} \ell} \mathrm{dx}_{\mathrm{k}} \mathrm{dx}_{\ell}=2 \mathrm{~d}_{\mathrm{k} \ell} \mathrm{dx}_{\mathrm{k}, \mathrm{~K}} \mathrm{x}_{\ell, \mathrm{L}} \mathrm{dX}_{\mathrm{K}} \mathrm{dX}_{\mathrm{L}} \tag{20}
\end{equation*}
$$

From (7), it follows that

$$
\begin{equation*}
\dot{\mathrm{C}}_{\mathrm{KL}}=2 \dot{\mathrm{E}}_{\mathrm{KL}} . \tag{21}
\end{equation*}
$$

From (19)-(21), we find

$$
\begin{equation*}
\dot{\mathrm{C}}_{\mathrm{KL}}=2 \dot{\mathrm{E}}_{\mathrm{KL}}=2 \mathrm{~d}_{\mathrm{k} \ell} \mathrm{x}_{\mathrm{k}, \mathrm{~K}} \mathrm{x}_{\ell, \mathrm{L}} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \mathrm{~d}_{\mathrm{k} \ell}=\dot{\mathrm{C}}_{\mathrm{KL}} \mathrm{X}_{\mathrm{K}, \mathrm{k}} \mathrm{X}_{\mathrm{L}, \ell}=2 \dot{\mathrm{E}}_{\mathrm{KL}} \mathrm{X}_{\mathrm{K}, \mathrm{k}} \mathrm{X}_{\mathrm{L}, \ell} \tag{23}
\end{equation*}
$$

Equations (22) and (23) show the relationship between the deformation rate tensor $\mathrm{d}_{\mathrm{k} \ell}$ and the material derivative of Green's deformation tensor and Lagrangian strain tensor.

Rivlin-Ericksen Tensors

Definition: The Rivlin-Ericksen tensor of order n is defined as

$$
\begin{equation*}
\frac{\mathrm{d}^{\mathrm{n}}}{\mathrm{dt}^{\mathrm{n}}}\left(\mathrm{ds}^{2}\right)=\mathrm{A}_{\mathrm{k} \ell}^{(\mathrm{n})} \mathrm{dx}_{\mathrm{k}} \mathrm{dx}_{\ell} . \tag{24}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\mathrm{A}_{\mathrm{k} \ell}^{(1)}=2 \mathrm{~d}_{\mathrm{k} \ell} . \tag{25}
\end{equation*}
$$

The Rivlin-Ericksen tensor satisfies the following recurrence relationship:

$$
\begin{equation*}
\mathrm{A}_{\mathrm{k} \ell}^{(\mathrm{n}+1)}=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~A}_{\mathrm{k} \ell}^{(\mathrm{n})}+\mathrm{A}_{\mathrm{km}}^{(\mathrm{n})} \mathrm{v}_{\mathrm{m}, \ell}+\mathrm{A}_{\ell \mathrm{m}}^{(\mathrm{n})} \mathrm{v}_{\mathrm{m}, \mathrm{k}} \tag{26}
\end{equation*}
$$

For example,

$$
\begin{equation*}
\mathrm{A}_{\mathrm{k} \ell}^{(2)}=2 \dot{\mathrm{~d}}_{\mathrm{k} \ell}+2 \mathrm{~d}_{\mathrm{km}} \mathrm{v}_{\mathrm{m}, \ell}+2 \mathrm{~d}_{\ell \mathrm{m}} \mathrm{v}_{\mathrm{m}, \mathrm{k}} \tag{27}
\end{equation*}
$$

The Rivlin-Ericksen tensors are important tensors for certain viscoelastic materials.

Lemma: The material derivative of the Jacobian is given by

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~J}=\mathrm{Jv}_{\mathrm{k}, \mathrm{k}} . \tag{28}
\end{equation*}
$$

Time Rate of Change of Volume Element

Noting that

$$
\begin{equation*}
\mathrm{dv}=\mathrm{JdV} \tag{29}
\end{equation*}
$$

It follows that

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{dv}=\frac{\mathrm{dJ}}{\mathrm{dt}} \mathrm{dV}=\mathrm{v}_{\mathrm{k}, \mathrm{k}} \mathrm{JdV},
$$

or

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{dv}=\mathrm{v}_{\mathrm{k}, \mathrm{k}} \mathrm{dv} . \tag{30}
\end{equation*}
$$

Reynolds Transport Theorem

The material derivative of an integral taken over a material volume is given as

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \iiint_{\mathrm{v}} \mathrm{fdv}=\iiint_{\mathrm{v}} \frac{\partial \mathrm{f}}{\partial \mathrm{t}} \mathrm{dv}+\oiint_{\mathrm{s}} \mathrm{fv} \cdot \mathbf{d s} \tag{31}
\end{equation*}
$$

Proof:

$$
\frac{\mathrm{d}}{\mathrm{dt}} \iiint_{\mathrm{V}} \mathrm{fdv}=\frac{\mathrm{d}}{\mathrm{dt}} \iiint_{V} \mathrm{f} J \mathrm{dV}=\iiint_{V}\left(\frac{\mathrm{df}}{\mathrm{dt}} \mathrm{~J}+\mathrm{f} \frac{\mathrm{dJ}}{\mathrm{dt}}\right) \mathrm{dV}
$$

Using (30), we find

$$
\frac{\mathrm{d}}{\mathrm{dt}} \iiint_{\mathrm{V}} \mathrm{fdv}=\iiint_{\mathrm{V}}\left(\frac{\mathrm{df}}{\mathrm{dt}}+\mathrm{v}_{\mathrm{k}, \mathrm{k}} \mathrm{f}\right) \mathrm{JdV}=\iiint_{\mathrm{V}}\left(\dot{\mathrm{f}}+\mathrm{v}_{\mathrm{k}, \mathrm{k}} \mathrm{f}\right) \mathrm{dv}
$$

Noting that $\dot{f}=\frac{\partial f}{\partial \mathrm{t}}+\mathrm{v}_{\mathrm{k}} \frac{\partial \mathrm{f}}{\partial \mathrm{x}_{\mathrm{k}}}$, we find

$$
\frac{\mathrm{d}}{\mathrm{dt}} \iiint_{\mathrm{v}} \mathrm{fdv}=\iiint_{\mathrm{v}}\left(\frac{\partial \mathrm{f}}{\partial \mathrm{t}}+\frac{\partial}{\partial \mathrm{x}_{\mathrm{k}}}\left(\mathrm{v}_{\mathrm{k}} \mathrm{f}\right)\right) \mathrm{dv}
$$

Using the divergence theorem (25) follows.

Spin and Vorticity

Spin tensor is defined as:

$$
\begin{equation*}
\omega_{\mathrm{k} \ell}=\frac{1}{2}\left(\mathrm{v}_{\mathrm{k}, \ell}-\mathrm{v}_{\ell, \mathrm{k}}\right) \tag{32}
\end{equation*}
$$

Vorticity vector is defined as:

$$
\begin{equation*}
\zeta_{\mathrm{i}}=\varepsilon_{\mathrm{ijk}} \omega_{\mathrm{kj}}=\varepsilon_{\mathrm{ijk}} \mathrm{~V}_{\mathrm{k}, \mathrm{j}} \tag{33}
\end{equation*}
$$

Angular velocity vector is defined as

$$
\begin{equation*}
\omega_{\mathrm{i}}=\frac{1}{2} \zeta_{\mathrm{i}} . \tag{34}
\end{equation*}
$$

In vector notation, we have

$$
\begin{equation*}
\boldsymbol{\zeta}=\nabla \times \mathbf{v}, \boldsymbol{\omega}=\frac{1}{2} \nabla \times \mathbf{v} \tag{35}
\end{equation*}
$$

Note that

$$
\begin{equation*}
(\nabla \mathbf{v})^{\mathrm{T}}=\mathbf{d}+\boldsymbol{\omega},\left(\mathrm{v}_{\mathrm{i}, \mathrm{j}}=\mathrm{d}_{\mathrm{ij}}+\omega_{\mathrm{ij}}\right) \tag{36}
\end{equation*}
$$

