

Properties
Clarkson

Fluctuation Velocity	$\mathbf{v}_{\mathrm{i}}{ }^{\prime}=\mathbf{v}_{\mathrm{i}}-\mathbf{v}$
Internal Energy Density	$\mathrm{e}=\lim _{\mathrm{L} \rightarrow 0} \frac{\sum \mathrm{~m}_{\mathrm{i}} \frac{1}{2} \overline{\mathbf{v}_{\mathrm{i}}^{\prime} \cdot \mathbf{v}_{\mathrm{i}}^{\prime}}}{\sum \mathrm{m}_{\mathrm{i}}}$
Temperature $\frac{3}{2} \mathrm{kT}=\frac{1}{2} \mathrm{~m} \overline{\mathbf{u}^{\prime 2}}$	

FUNDAMENTALS Clarkson

Thermodynamics
 Clarkson University

- Thermodynamic properties (temperature, entropy,
- internal energy, enthalpy, etc.) are related.
- For a thermodynamic state, all properties are
- specified.
- A process constitutes a change in state.
- Reversible process is a sequence of
thermodynamical state.
- Extensive properties are proportional to the mass
- of the system.

Intensive properties are independent of the mass

- of the system.

Entropy

Entropy measures the irreversibility of a process
$\mathrm{ds}=\frac{\mathrm{dQ}}{\mathrm{T}} \quad$ (For reversible processes)
Statistical Mechanics (Boltzmann)

$$
\mathrm{s}=\mathrm{k} \ln \mathrm{f}
$$

Helmholitz Free Energy Function Clarkson

$$
\begin{array}{lll}
\hline \psi=\mathrm{e}-\mathrm{Ts} & \psi=\psi(\mathrm{T}, \rho) & \\
\hline \mathrm{s}=-\left.\frac{\partial \psi}{\partial \mathrm{T}}\right|_{\mathrm{p}} & \mathrm{p}=\left.\rho^{2} \frac{\partial \psi}{\partial \rho}\right|_{\mathrm{T}} & \text { Enthalpy } \\
& \mathrm{h}=\mathrm{e}+\frac{\mathrm{p}}{\rho} \\
\hline
\end{array}
$$

$$
\begin{array}{l|l|}
\text { Isothermal Compressibility } & \alpha=\left.\frac{1}{\rho} \frac{\partial \rho}{\partial \mathrm{P}}\right|_{\mathrm{T}} \\
\text { Bulk Expansion } & \beta=\left.\frac{1}{\rho} \frac{\partial \rho}{\partial \mathrm{~T}}\right|_{\mathrm{p}}
\end{array}
$$

Basic Thermodynamical Equations Clarkson

$$
\begin{gathered}
T d s=d e+p d \vartheta \\
d e=T d s-p d \vartheta=T d s+\frac{p}{\rho^{2}} d \rho \\
\mathrm{~T}=\left.\frac{\partial \mathrm{e}}{\partial \mathrm{~s}}\right|_{\vartheta} \quad \mathrm{p}=-\left.\frac{\partial \mathrm{e}}{\partial \vartheta}\right|_{\mathrm{s}}=\left.\rho^{2} \frac{\partial \mathrm{e}}{\partial \rho}\right|_{\mathrm{s}}
\end{gathered}
$$

Ideal Gas

Clarkson

$\mathrm{p}=\rho \mathrm{RT}$	$\mathrm{h}=\mathrm{e}+\mathrm{RT}$	
$\mathrm{c}_{\mathrm{P}}=\left.\frac{\partial \mathrm{h}}{\partial \mathrm{T}}\right\|_{\mathrm{P}}=\mathrm{c}_{\mathrm{V}}+\mathrm{R}$	$\mathrm{c}_{\mathrm{V}}=\left.\frac{\partial \mathrm{e}}{\partial \mathrm{T}}\right\|_{\mathrm{P}}$	$\gamma=\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{V}}}$

Incompressible Substance
$\mathrm{C}_{\mathrm{P}}=\mathrm{C}_{\mathrm{V}} \quad \gamma=1$

G. Ahmadi

