ME 537 FLUID MECHANICS OF AEROSOLS FALL 20204

INSTRUCTOR: Goodarz Ahmadi, Room 267 CAMP (325-268-2322)

gahmadi@clarkson.edu

Office Hours: Monday and Wednesday 12:30 - 3:30 pm.

TEXT: None. Lecture notes are available on the web.

TA: Roy King (CAMP 292) Office hours: Friday 3:00-5:00 pm.

Course Description

Review of viscous flow theory. Creeping flows around a sphere. Drag and lift forces acting on particles. Introduction to aerosols. Diffusion of aerosols in laminar flows. Brownian motion and Langevin equation. Mass diffusion in pipe and boundary layer flows. Effects of electrostatics, van der Waals, and other surface forces. Computational aspects of aerosol dispersion in laminar flows. Particle adhesion and particle removal from surfaces. Coagulation of aerosols due to Brownian movements. Experimental techniques for particle adhesion measurements. Cleanroom equipment. Applications to micro-contamination control, xerography, and surface cleaning in microelectronic and imaging industries. Aerosol transport and deposition in environmental and biomedical applications.

Delivery Method

The course is offered in blended mode, both in-person in the class, as well as online (synchronous). The lectures are captured by Echo360 and are made available to students on Moodle.

COURSE WEB SITE:

https://webspace.clarkson.edu/projects/crcd/public_html/me537/index.php https://sites.clarkson.edu/gahmadi/courses/me537/

Course Objectives

- 1. To provide a fundamental understanding of aerosol transport and removal in laminar flows.
- 2. To provide a fundamental understanding of particle adhesion and removal from surfaces
- 3. To provide a fundamental understanding of computational modeling of particle resuspension in laminar flows.
- 4. To provide a fundamental understanding of the industrial, environmental, and biomedical applications of aerosols.

Course Learning Outcomes

Objective 1:

• Students will be able to formulate and solve aerosol transport and deposition in laminar flows.

Objective 2:

• Students will be able to analyze the adhesion and removal of micro- and nanoparticles to surfaces.

Objective 3:

- Students will demonstrate a fundamental understanding of computational fluid mechanics and particle trajectory analysis procedures.
- Students will demonstrate using the ANSYS-Fluent Code for solving aerosol transport in laminar flows.

• Students will become familiar with the experimental procedure for particle adhesion and removal analysis.

Objective 4:

- Students will understand the micro-contamination problems in microelectronic and imaging industries.
- Students will understand the basics of surface cleaning, including ultrasonic cleaning.
- Students will demonstrate the application of aerosol transport and dispersion in at least one industrial, environmental, or biomedical application.

COURSE OUTLINE

Course Schedule & Graded Activities

Dates	Module Title	Learning Materials (readings, videos,	Activities	
		etc.)		
Week 1	I. REVIEW OF VISCOUS	 Navier-Stokes Equation 	Homework	
	FLOWS	- Simple Flows		
		- Creeping Flows		
		 Drag on Spherical Particles 		
Weeks 2-4	II. AEROSOLS	 Introduction to Aerosols 	Homework	
		- Hydrodynamic Forces (Drag, Lift)		
		- Brownian Motions		
		 Convective Diffusion 		
		- Aerosol Kinetics		
		 Particle Deposition Mechanisms 		
		- Gravitational Sedimentation		
		 Aerosol Coagulation 		
Weeks 5-6	III. PARTICLE	- JKR and other Adhesion Models	Homework	
	ADHESION	Particle Removal		
		 Effects of Charge and Humidity 		
Weeks 7-9	IV. COMPUTATIONAL	 Finite Difference and Finite Volume 	Computer	
	FLUID MECHANICS	Methods	Projects	
		- Introduction to CFD	D 1	
		Introduction to ANSYS-Fluent Code	Exam-1	
Weeks 10-	V. SIMULATION	Laminar Flow Simulation	Computer	
12	METHODS	- Spherical Particles in Laminar Flows	Projects	
		Brownian Motion of Nanoparticles		
		Spherical Particles Resuspension		
Weeks 13	VI. EXPERIMENTAL	 Particle Adhesion Measurement 	Homework	
	TECHNIQUES	Particle Removal		
		- Surface Cleaning		
		Laser Surface Scanner		
Weeks 14-	VII. APPLICATIONS	- Micro-contamination Control Homework		
16		- Surface Cleaning		
		Clean Room and Process Equipment		
		Ultrasonic and Megasonic Cleaning		
		Aerosol Transport and Deposition in		
		Environments		

COURSE TOPICS

I. REVIEW OF VISCOUS FLOWS

- Navier-Stokes Equation
- Simple Flows
- Creeping Flows
- Drag on Spherical Particles

II. AEROSOLS

- Introduction to Aerosols
- Hydrodynamic Forces (Drag, Lift)
- Brownian Motions
- Convective Diffusion
- Aerosol Kinetics
- Particle Deposition Mechanisms
- Gravitational Sedimentation
- Aerosol Coagulation

III. PARTICLE ADHESION

- JKR and other Adhesion Models
- Particle Removal
- Effects of Charge and Humidity

IV. REVIEW OF COMPUTATIONAL FLUID MECHANICS

- Finite Difference and Finite Volume Methods
- Introduction to Fluent Code

V. SIMULATION METHODS

- Laminar Flow Simulation
- Spherical Particles in Laminar Flows
- Brownian Motion of Nanoparticles
- Spherical Particles Resuspension

VI. EXPERIMENTAL TECHNIQUES

- Particle Adhesion Measurement
- Particle Removal
- Surface Cleaning
- Laser Surface Scanner

VII. APPLICATIONS

- Micro-contamination Control
- Surface Cleaning
- Clean Room and Process Equipment
- Ultrasonic and Megasonic Cleaning
- Aerosol Transport and Deposition in Environments

EVALUATION METHOD

Exam 1 (October 11, 2024, CAMP 268, 3:00-4:15 pm) 25% Final Exam (Final Exam week) 35% Computational Projects 30% Homework 10%

Grading

Grade Ranges

Graduate Letter Grades

Course Average	Grade	Quality Points
97+	A+	4.0
93-96	A	4.0
90-92	A-	3.667
87-89	B+	3.334
84-86	В	3.0
80-83	B-	2.667
76-79	C+	2.334
70-75	С	2.0
< 70	F	0

Course Policies

Etiquette Expectations & Learner Interaction

Educational institutions promote the advancement of knowledge through positive and constructive debate--both inside and outside the classroom. Please visit and follow: Netiquette and Electronic Learner Interaction Guidelines.

Institutional Policies & Regulations

Academic Integrity

Students are expected to abide by the standards of academic honesty, as described in the <u>Clarkson Regulations</u>. The work or words of others must be properly cited. Please refer to Clarkson Library's <u>Guide to Plagiarism</u> and <u>Citing Sources</u>.

Students with Disabilities Policy

Clarkson University welcomes inquiries and applications from individuals who have disabilities. Information relating to disabling conditions is not a determining factor in admission decisions. The University strives to make all facilities and programs accessible to students with disabilities by providing appropriate academic adjustments and other appropriate modifications (accommodations), as necessary. Timely notification of any need for accommodations due to a disability is encouraged so that the Office of Accommodative Services (OAS) may provide for students in an efficient manner.

For more information or other appropriate campus referrals, contact:

Director of Accommodative Services Clarkson University P.O. Box 5645 Potsdam, NY 13699-5635

Phone: 315-268-7643 **Fax**: 315-268-2400

Email: oas@clarkson.edu

Office of Accessibility Services Website

Instructor Participation

During this course, as your instructor, you can expect me to

- Respond to emails and voicemails within 1 day
- Grade activities and assessments within 3 days
- Be an active participant on the discussion board

Academic Freedom

The fundamental aspects of academic freedom at Clarkson University include both the freedom to teach and the freedom to learn. Students are encouraged to exercise this freedom responsibly, embracing opportunities for open discussion, inquiry, and expression in the classroom. Professors evaluate student performance based solely on academic criteria, fostering a fair and supportive learning environment. To maintain a respectful and safe community, the University prohibits actions that violate the law, defame individuals, pose genuine threats, infringe on privacy or confidentiality, contravene the Equal Opportunity, Harassment, and Nondiscrimination Policy, or involve unwelcome activity in the classroom. The professor determines if classroom behavior is inappropriate and may address the issue directly or refer it to the appropriate official with authority to be addressed.

REFERENCES

- 1. J. Y. Tu, K. Inthavong, and G. Ahmadi, "Computational Fluid and Particle Dynamics in the Human Respiratory System," Springer, New York (2013). https://www.springer.com/gp/book/9789400744875
- 2. W.C. Hinds, Aerosol Science and Technology, Wiley (1983, 1999).
- 3. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Martinus Nijhoff (1983).
- 4. N.A. Fuchs, The Mechanics of Aerosols, Dover (1989).
- 5. V.G. Levich, Physicochemical Hydrodynamics, Prentice-Hall (1962).
- 6. F. White, Viscous Flow, McGraw Hill (1974).
- 7. R.L. Panton, Incompressible Flow, John Wiley (1984).
- 8. H. Schlichting, Boundary Layer Theory, McGraw Hill (1979).
- 9. J.O. Hinze, Turbulence, McGraw Hill (1975).
- 10. H. Tennekes and J.L. Lumley, A First Course in Turbulence, MIT Press (1981).
- 11. G.M. Hidy, Aerosols, Academic Press (1984).
- 12. G.M. Hidy and J.R. Brook, The Dynamics of Aerocolloididal Systems Pergamon Press (1970).
- 13. Papavergos and Hedley, Chem. Eng. Rs. Des., Vol. 62, September 1984, pp. 275-295.
- 14. S.K. Friedlander, Smoke, Dust and Haze, Wiley (1977).
- 15. J. H. Vincent, Aerosol Science for Industrial Hygienists, Pergamon Press (1995).