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In this section, an introduction to the historical development in turbulence
modeling is provided.
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VISCOUS FLOW

The conservation laws for a continuous media are:

Mass
ﬂ—r+N><(r uy=0
It
Momentum
LR
dt

Angular Momentum

th =t
Energy

ré=t:Nu+Ng+rh
Entropy Inequality

.~ .0, rh
rh-Nx=)- —>0
>(T) T2

Constitutive Equation

Experimental evidence shows that for a viscous fluid, the stress is a function of
velocity gradient. That is

ty =-pd, +Gy (ui,j)
The velocity gradient term may be decomposed as
U =dj +w,

where d; isthe deformation rate tensor and w;; isthe spin tensor. These are given as

1 1
dy :E(uk,l + ul,k)! Wy ZE(uk,l - ul,k)
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The principle of Material Frame-Indifference of continuum mechanics implies that the
stress is generated only by the deformation rate of media and the spin has no effect. This
Is because both stress and deformation rate tensors are frame-indifferent while spin is not.
Thus, the general form of the congtitutive equation is given as

ty =-pdy +F(d;)
For a Newtonian fluid, the constitutive equation is linear and is given as
ty =(-p+lu;)d, +2nd,
The entropy inequality imposed the following restrictions on the coefficient of viscosity:
3 +2m>0, nm>0,

Using the constitutive equation in the balance of momentum leads to the celebrated
Navier-Stokes equation. For an incompressible fluid the Navier-Stokes and the
continuity equations are given as

2
Py My o TR U
It X, X, i, 9%,
flu, _
3

These form four equations for evaluating four unknowns u,, p.

TURBULENT FLOW

In turbulent flows the field properties become random functions of space and
time. Thus

u =U, +u¢ u =U,, u¢=0
p:P+p( B:P'a(l:zo

Substituting the decomposition into the Navier-Stokes equation and averaging leads to
the Reynolds equation.
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Reynolds Equation

W, W_ 1, TU  Tusg
it "I, rix xx, o 1K,

Here

ti =-ruf¢ =Turbulent Stress Tensor

First Order Modeling (Classica Phenomenology)

Boussinesg Eddy Viscosity:

— du
ty =-r u¢/¢:ran—y

ty _ —— W, Wy 1——
r_':-ulﬂug::nT(.”T+Ti’)-:—auf;ugdij

j

Prandtl Mixi ng Length

g =riz) 18
iy Ty
”T:|2m|E|, Tge=e I
iy s; Ty
Kolmogorov-Prandtl Expression
Eddy Viscosity
n;»cu/t, u = velocity scale, /=length scale, C = congt.
Kinematic Viscosity
nu cl, c= speed of sound, | = mean freepath
Let
T A VA
Ty Ty

For free shear flows



l.~cl, (L, = haf width)
Closeto awall
¢, =ky (y = distance from the wall)

Local Equilibrium

For local equilibrium
Production = Dissipation <::>

Shortcomings of the Mixing Length Model

When b =0P n;=0
iy
Lack of transport of scales of turbulence

Estimating the mixing length, /...

Mixing length Hypothesis

—/

e

B

Reattachment Point

U

At the reattachment point ‘H_y =0 which leads to vanishing eddy diffusivity and

thus negligible heat flux. Experiments, however, show that the heat flux is maximum at

the reattachment point.



One-Equation Models

Eddy Viscosity

n, =c k'?¢,

Exact k-equation
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k= %m: = Turbulence Kinetic Energy

d uug _ @( ugug¢ P(S oY ‘ﬂu¢‘ﬂu¢ 7 utug¢
dt 2 ufl "ﬂx ‘ﬂx ™ XX 2
%ggalse';:gr\t/e TurbulenceDiffusion Production Dissipatin ViscousDiffusion
where
EM = convective transport, d :—+U-i
dt dt "X,
¢
l ug(——- u +—)—turbulenced|ffuson
X 2
u,ﬂut}:L = production
X .
j
STLTT dissipation
‘ﬂx x;
, —
T M:viscousdiffusion
X X;
Modeled k-equation
‘ uU. 3/2
e R S
dt  Tx; s, X, ix; T Tx !
where
1 9 k
——) =turbulence diffusion, S, »1(turbulence Prandlt number)
x; sy T
_ U _
nT(ﬂU' +ﬂ J)‘”U' = production,
ix, % T

i
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3/2

Co = e = dissipation.

Note that the turbulence length scale ¢ is given by an algebraic equation.

Bradshaw’s M odel
Modeled k-equation

3/2
L
dt r Ty l

akE = production
iy

where

3/2

Co = dissipation
- ubC=ak (shear stress kinetic energy)

t y y
B=MXqgd), /=df (=
rvy g(d) (d)

Shortcomings of One-Equation M odels

Use of an algebraic equation for the length scale istoo restrictive.
Transport of the length scale is not accounted for.

Transport of Second Scale (Boundary Layer)

The transport of a second turbulence scale, z, isgiven as

z-Equation
dz ‘Hz
S R W—o-u—HS
d Ty s, Ty ! 2 n,
where



1 (n ﬂz) =diffusion

fy s,

Cc,— i ) = production
1 k 1-[ p

k :

c, — = destruction,
nT

S, = secondary source

Choicesfor z

Turbulence Time Scale= +//2/k

Turbulence frequency Scale = yk/¢?
Turbulence mean-square vorticity Scale=k/¢?

ut que
Turbulence Dissipation= e= n‘”u Tuf

X, ‘ﬂx
z=k¢
e -Equation (exact):
@___( &) - ‘Hu¢‘|1u¢‘ﬂug ‘ﬂu¢ 12 u¢
da  9x, ‘ﬂ %, 1, ‘ﬂxk‘ﬂx %, 91X,

j

Diffusion Generationby
vortexstretching

Note that
3/2 3/2
e~ k , l~ k
/ e
Thus
k2
nT ~'\/E€ -~ ?

Note also that € isalso the amount
of energy that paths through the
entire spectrum of eddies of
turbulence.

Viscousdestructian

A
E(k) Universal Equilibrium

AN

Inertia
Subrange

A 4

Schematics of turbulence energy spectrum.
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Two-Equation Models

The k- e Model
n—cm2 _m n(&+h_g
T e ' [l T ﬂxj Xi 3 ij
k-equation
_ U, _
%:l(u_Tﬁ).pnT(ﬂU' +ﬂ ,)‘HU, -
dt X, ‘s, T, ix; X "X, ryond
Diffusion Pr oduction
€-equation
U, _ 2
EZL(U—TK)‘FCF:L”TE ﬂU' + ])ﬂu' - Ceze_’
dt  9x, s, X, KX, X7 T K
Diffusion Generation Distruction
where

c,=009,c,=145,¢c,, =19,s, =1, s, =13, (Jonesand Launder, 1973)

Momentum
(TR S Bvror
dt rix %,
Mass
u,
X,

Closure: Six Equations for six unknowrs, v, P, k, €.

K olmogorov M odel

% =2u,S;S, - 1k2w+A¢ l -(Kﬁ)
dt " 2 T, wix,
Production Dissipatian Diffusion
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% =- lwz +2A¢l(£ﬂ_k)

dt 10 ix; "w i,
_ U,

N, :A_k, S, :1(&+L)
w 2 ‘ﬂxj X,

Comparison of Model Predictions

In this section comparisons of the predictions of the mixing length and one and
two-equation models with the experimental data for ssimple turbulent shear flows are
presented.

Development of Plane Mixing Layer (Rodi, 1982)

10

VT4 o
f ke oty
a2f~ [ .00m ~
(initial profile)
0 ] I | 1
-S ) S 10 15

CROSS-STREAM DISTANCE , cm

It is seen that the k - e model captures the features of the flow more accurately
when compared with the one-equation and mixing length model.

10
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Turbulent Recirculating Flow (Durst and Rastogi, 1979)

The k- e model predictions for turbulent flow in a channel with an
obstructing block are compared with the experimental data.

. th )\ N DATA
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b) Velocity profiles

Flow in a Squar e Cavity (Gosman and Y oung)

The k- e model predictions for a square cavity are shown in this section.

05

11
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Free-Stream Turbulence

The free stream turbulence affects the skin friction coefficient. The mixing length

model can not predict such effects. The k- e model does areasonable job in predicting
the increase of skin friction coefficient with the free stream turbulence.

S
. Ty*le
3 O —0 n S o
Ce 10 .\~_..
3- 1.0 —_—0
4 Y T
0.6 0.7 x[(m] 0.8

Turbulent Channel Flow (Rodi, 1980)

Distribution of mean velocity and turbulence quantitiesin fully devel oped two-

dimensional channel flows was predicted by Rodi (1980) using an algebraic stress model
(amodified k - e model)

symmetry plane
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1..0 U/Ug

Open Channel
Flow

AU
e k \ Expts
= v2([ 93]
°o€

Pred.(32)|

JetsIssuing in Co-flowing Streams (Rodi, 1982)

For ajet, q= U—(‘jJ(U - U )dy = Excess momentum thickness
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Shortcomings of the k - e Model

_u(IU(]; n (_'+ﬂ_)__
ix; M~ 3

Limited to an eddy viscosity assumption.

Eddy viscosity and diffusivity are assumed to be isotropic.
Convection and diffusion of the shear stresses are neglected.
Normal turbulent stresses are not considered.

Main assumptionis: ufu¢~Kk.

Stress Transport Models

Subtracting the Navier-Stokes equation form the Reynol ds equation, we find an
evolution equation for the turbulence fluctuation velocity. That is

flug flu¢ _ 1 qp¢ T?u¢

+U, —=- +n "+ —uluf - —— (uug)- u 1
e v PRy ,”X ¢ ( f)- &t . ey
Tug Tu¢ 1 9qp Tue q
—t+y, —L=-="+n L+ ——ugug -—udu u— 2
U T T M op e R g (D up @

Multiplying Equation (1) by uf, and Equation (2) by uf, adding the resulting equations
and averaging leads to the exact stress transport equation:

q ‘ﬂu.¢‘ﬂuﬂ3 P fu¢ Tu¢
—+U uﬂu¢ uﬂu ' ———t—(——+—
(ﬂt ﬂ k) " E Xy 9 Xk] ﬂxk X, r (ﬂxj ﬂxi)
Convection Pr oduction Dissipati; Pr essure strain
-V s+ P e, +u®) - nuwg
Xk K r 1 jk |k ﬂxk (]
Diffusion
where
U .
[u,ﬂugﬂ ' +u9ugﬂu'] = production,
X X

14
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‘Hu'ﬂ

—L =dissipation,
‘ITXk X
('ﬂu¢ fuj —1) = pressure strain
ix; 9

ﬂ_[umqug+ (u,ﬂd]k+u0d,k) nﬂﬂ }t]:diffusion.

Xy Xy

Modeling Diffusion:

QJ(J]U =C s%(@pﬂ_;iu@ +mﬂﬂg ¢ uguftﬂu'(ml)
! X

Pressure diffusion » 0O
Viscous diffusion » O

Modeling Dissipation

‘Hu¢ 'Hu 2OI

e
‘ﬂx x, 3 °

Modeling Pressure-Strain

p'fug ¢ _ ug Tug ‘|]u¢ ‘Hu
(ﬂx ﬂx.)' cplxe(xxl){( ﬂ|)( )

o

( ') (““%)1(““¢ ““ )

X

2 2
]i(j)ﬂ @

where

jo=- Q(E)(M- gdij k) (Return to isotropy)

j .(,2) +J @ —_ g(pij - gpdij) (Rapid term)
Here

P = (U g - UL )

k

15
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Pressure-Srain Correlation

. . . p fu¢ Tu¢
Modeling the pressure-strain correlation, — (‘"—I +—), iscritical to the stress
r ) X.
j i
transport equations.

Navier-Sokes Equation

2
&+u &:_lﬂp +n Tu

(1)
qt K X, r 9x, ‘ﬂxj‘ﬂxj
Taking the divergence of (1), wefind
Tuu,_ 1 Tp @)
™I, 1 IxIx
or
2
R2P = uiu, 3)
r X, X,
Averaging Equation (3), theresult is:
_ , ——
NZB:_ﬂ UiUk_ ﬂ UIQUQ: (4)
r ™M, XX,
Subtracting (4) from (3), we find
NZB: _ZﬂUi ﬂu@ _ ﬂulq:ﬂug + ﬂulq:ﬂug . (5)
r ™ ™ X X X 9,
Introducing the Green function G(x,x,) for the Poisson equation. i.e.,
N2G(x,x,) =d(x- X,), (6)

Equation (5) may be restated as

16
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— X2 7
P= PO G e, T T ™)
The pressure-strain rate correlation then becomes
. Tug Tug ‘ﬂu¢ ‘ITu] ﬂuﬁt ﬂu ‘ﬂu}t
(et ) =- X,X +2 dx,
(ﬂx 1R ) E?Kﬁ 1)Kﬂ 11.)(ﬂ _ ) ( ) 1 ﬂ | H
(8)
or
pIug e o, 0,0 9
r(‘"Xj 1Ri) b 057+ 5) 9
Note that for unbounded regions
1 1
G - — 10
(o) = 4p |x- %, | (10)
Modeled Stress Transport Equation
1 1 T1U; U, 2
_ — Yyu@ct=- ¢—! Wwe—11- =d.
(‘ﬂt +U, ‘ﬂxk)u'(n’ [ufug i, +uug ‘ITXk] 3d,je
Convection Pr oduction Dissipation
— 2 . . W) s (w
B Cls(u.ﬂuﬂ:' gdijk)-'-(J i(jZ) +) E.Z))"'(J .(J ) +) J(i ))
Pr essure- strain Wwall effects
vl ﬂu@—@ T M—' iy
|
Diffusion
where

[uaug d + uﬂu@

k Xk

] = production

gdije = dissipation,

cls(m:- gdijk) = pressure-strain

it
'"“9”' U Ul - ditfuson
i T

Tudu¢
C, ‘ﬂ_{ [U(UH‘HM

17



Dissipation Equation
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- ) 2
(1+ Uki)e: Cei(hugul(tk)_ Celgul(]ug&_ Ceze_ ,
qt X, %, e 1, k x, k
Convection Diffusion Generation Destruction
where

T k—— e e
C,— (—ugut—) =diffusion,
Ix, e ¢ X,
celE u,au&t& = generation

k X,

e2
C., — = destruction.
K

Reynolds Equation
Fou Ty = 1P 1 g
It X, rax, X,

Continuity Equation

W, _
fix

0

Closure

There are eleven equations for eleven unknowns, U,, P, ulug¢, e.

18
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Comparison of Model Predictions

In this section comparisons of the predictions of the stress transport model with
the experimental data for simple turbulent shear flows are presented.

Curved Mixing Layer (Gibson and Rodi, 1981)

—U?"- 0.002

r =——curved region

0 0 20 0 W0 S 60 70 8 90 100
s(cm)

19
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Asymmetric Channel Flow (Launder, Reece and Rodi, 1975)

Mean Velocity and Turbulent Shear Stress
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Algebraic Stress Transport Model (Rodi, ZAMM 56, 1976)

A simplified stress transport model is given as:

— u —quU.
Kelyr S B Svryrodih Moy Wy At Ry et
dt ' . € >, 1) ™, X,
Diffusion Production ' (1)

e, — 2 2. 2
- Cli(ulquﬁt_ dijgk)_ oR; - dijgp)' gdiie

Pr essure- Strain Dissipatio

where
T k— T — e
D. =——(—utu ut®) =diffusion,
ij 1.[Xk(e H:F:ﬂ_xl i ]) ITTu

AT umg& = production,

P @g v
) = Ul
ij i ﬂxk I ﬂxk

Cls(m' dij %k) - g(Pu B dij %P) = pre$ul'e-Strai "

gdije = dissipation.

Here, P= 1 P, isthe production rate of turbulent kinetic energy. Contracting

Equation (1), we find the transport equation for k:

dk _ . T koo Ik wege Ve
a0 O (U g ) R - - 2)

%, Dissipation

Diffusion Production

where
1 k—— Tk e
D=—(—ufuf—) =diffusion
X, e ¢ X,
eVl -
P= u@uﬂ:ﬂ— = production
XI
Rodi (1976) assumed that
d —— u®® dk utu¢
—uu¢- D, =—-2L(—-D)=—-2(P- ¢, 3
UG- Dy ==L D) ==~ (P- o ®3)

21
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Using (3) in (1) and rearranging, the result is:

¢ P 2Pd§l
é P R (
uiqu?:kégdij-l_l J_e 13Pe ]u (4)
€3 “ 1+ =(=-pV
& c, e 'H

Equation (4) provides an algebraic expression for ugug.

For simple shear flows, it may be shown that equation (4) reduces to the
Kolmogorov-Prandtl hypothesis with

k2
r]T = Cm? (5)
and
1 P
2(1- )[1' C—(l' gg)]
o= 9 & with g =06 and ¢, =1.8- 2.2. (6)
Cl

n+ -
c, e

Conclusions (Existing Models)

Available models can predict the mean flow properties with reasonable accuracy.
Small adjustments of parameters are sometimes necessary!

First-order modeling gives reasonable results only when a single length and velocity
scale characterizes turbulence.

The k- e model gives relatively accurate results when a scalar eddy viscosity is
sufficient to characterize the flow. That is there is no preferred direction for example
through the action of a body force.

The stress transport models have the potential to most accurately represent the mean
turbulent flow fields.

Deficiencies of Existing Models

Adjustments of coefficients are sometimes needed.

The derivation of the models are somewhat arbitrary.

There is no systematic method for improving a model when it loses its accuracy.
Models for complicated turbulent flows (such as multiphase flows) are not available.
Realizability and other fundamental principles are sometimes violated.

22
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For example, the transport equations for u'?, v**, w'? must always lead to positive
values of these quantities. In addition, the transport equations for the cross terms
must also lead to cross correlations that satisfy Schwarts inequalities. i.e.,

uv2- ug” >0

23



Anisotropic Rate-Dependent M odel
Averaged Balance L aws:

Mass

Linear Momentum

rv, =t +ti, +rf,
Thermal Energy

re=gq, +q +t,v,, +re+r
Fluctuation Energy

rk=tjv, +K,-re
Clausius-Duhem Inequality

rh-(gJd),- R, -rJ+rh"- S5, >0

Helmholtz free Energy Function

h oo

Heat Flux-Coldness Correlation
R =qjJ

Fluctuation Energy Flux-Turbulence Coldness Correlation
ST =KJ'-E

Total Heat Flux

Q =q; +qiT

24
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Clausius-Duhem Inequality

€ @& hlo u
Jer ‘-h—g:-lQiJi+tijv“+reu
& gy g J Q
3 T9T
U
+JT¥-réyT- h;]zu-iTKIJT,+ ——+tiv,, -rey>0
t e d)Ga J J'E;; ’ Qé

Constitutive Equations

Sress
t; =-pd; +2nd;
2 YA I:A)di‘ i él
tl =- Srkd, +r ‘I?/_DT'[]-F mT% (2+g2d,d, Jd, +bt &5 B -
Jaumann Derivative
Dd; _ .
Dt =d; +d,wy +dw,
Deformation Rate and Spin Tensors
1 1 1
d; ZE(Vi,j +Vj,i)’ W :E(Vi,j - Vi), DZEdijdij
Heat Flux

T
Q= ?( + C?_qzﬂ,i

Fluctuation Energy flux

T =

& m 0é K., U
K =¢m+—=K, - —t
i g Sk%,l t ,|H
Heat Capacity
2
C:-qﬂ{
fiq

25
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Thermodynamic Constraints
m >0,s%>0, g>0, |b|" < 489
m =C"r kt
Turbulence free Energy Function
€ a0 u
y' :k§n§*3+acmt2D+C G
6 8Ky 00
Turbulence Stress
2 i D él odl
t =- =rkd, +m j2d, +at—d +¢?d,d.d. +bt 7~d,d,d - d d,
i 3 j : j Dt i & j IH%
Basic Equations
v;; =0
6 .2 01 Dd; 1 fi
rv =- g0+§r kH,i ++2(m+ m')d; +m [at th"'bt (:_gdlkdkldij - dy dy) +¢°d, dy d;ly | trf,
)]
. é m, U
qu:é(k+C—)qu +2md,d; +re+r
e ShN ]
- y y Dd,
k= S Mk, - X )G +P+atni —Ld, - re
g st "l Dt

P=mi[2d,d, - btd,dd, +g(d,d,)?]

26
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Scale Transport Equations

, T N
rt :gm+ﬂT)tiH +Ch— P+Ct3%m+ﬁk%9[k ti][ki _Eti]
e S g v
& m
e 2O e, - rote?

s’ ga,+2aC"’D

zC‘lzo,Ctzzi, 1

>C"®>0,a,>0
aOm a'0 aOm

a,, max.(a, +2aC" °D)

e:CDE
t
7 T AY
re= e(m+ﬂ)e,ﬂ +coSp+ce m+mqaee91k ei][ki-Eei]
; RN - e
m 2
aem+ﬂ 2ac kz](Dk—z),ie,i'rCQZCeZe_
"9, +2aC"D 5 €

2
m’ :rka—, t =
e

o=

When ¢ =0, a =093, b=054
2

b
>—, g =0.005
gz 8 g

C"=0.09, C* =1.45, C* =1.92, s“=1,s°=13
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Comparison with the Experimental Data for Duct Flow

In this section the rate-dependent model predictions are compared with the

experimental data of Kreplin and Eckelmann, DNS of Kim et al. and the k-e model
predictions

Comparison of mean velocity profile with
the experimental data of Kreplin and
Eckelmann for Reynolds numbers of 8200
and 5600.

3.0

2.0 4

o' fu,
/

¥ib

Comparison of vertical turbulence
intensity with the experimental data of
Kreplin and Eckelmann, DNS of Kim et
al. and k-e model.

28

3.0

c2 0.4

Comparison of axial turbulence

intensity with the experimental data of
Kreplin and Eckelmann, DNS of Kim et

al. and k-e moddl.

3.0

Comparison of lateral turbulence

intensity with the experimental data of
Kreplin and Eckelmann, DNS of Kim et

al. and k-e moddl.
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-0 fu?

v/l

Comparison of turbulence shear stress with the experimental data of
Kreplin and Eckelmann, and DNS of Kim et al.

Comparison with Experimental the Data for Backward Facing Step Flows

In the section the rate-dependent model predictions are compared with the
experimental data of Kim et al. and the algebraic model of Srinivasan et al.

‘ILLLZ_/_K WAV A rd
Hy Tmme——,—
T H

i 1__
: \—1___

Schematics of the flow over a backward facing step.
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Velocity, U {m/s)

Comparison of the mean velocity profiles with the data of Kim et al. (1978).
(Dashed lines are the model predictions of Srinivasan et al. (1983).
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Turb. Kin. Energy, k (m#/s%)

Comparison of the turbulence kinetic energy profiles with the data of Kim et al. (1978).
(Dashed lines are the model predictions of Srinivasan et al. (1983).
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Comparison of the turbulence dissipation profiles.
(Dashed lines are the model predictions of Srinivasan et al. (1983).
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Comparison of the axial turbulence intensity profiles with the data of Kim et al. (1978).
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(Dashed lines are the model predictions of Srinivasan et al. (1983).
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Comparison of the vertical turbulence intensity profiles with the data of Kim et al.
(1978). (Dashed lines are the model predictions of Srinivasan et al. (1983).
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Comparison of the turbulence shear stress profiles with the data of Kim et al. (1978).
(Dashed lines are the model predictions of Srinivasan et al. (1983).
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Comparison of the mean velocity profiles with the data of Junjua et al. (1982) and
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Comparison of the axial turbulence intensity profiles with the data of Junjua et al. (1982)
and Chaturvedi (1963). (Dashed lines are the model predictions of
Srinivasan et a. (1983))
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Comparison of the vertical turbulence intensity profiles with the data of Junjuaet al.
(1982) and Chaturvedi (1963). (Dashed lines are the model predictions of
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Comparison of the turbulence shear stress profiles with the data of Junjua et al. (1982)
and Chaturvedi (1963). (Dashed lines are the model predictions of
Srinivasan et al. (1983))
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