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Correlation, Spectrum, and Scales

Definition: Correlation Tensor (Two-Point)

ug(x) ug (x,)
4

Consider a turbulent flow field as shown in

Figure 1. Here u, and u, are the components of T r
the velocity vectors and r =X, - X, is the distance
between the two points. The two-point correlation > >
tensor is defines as ug(x
{69 u(x,)

Q; (% xy) = U.Q(X)—UF()Q) X Xy
In a homogenous turbulent flow, the correlations Figure 1. Geometric features of two-point
(and all the statistics) are independent of the shift correlationsin aturbulent flow field.

of space origin. That is,

Qij (X,%,) = Qij (r)

Definition: Longitudinal Correlation Coefficient

The longitudinal correlation coefficient is defines as

Qll
f = =11
X u; 4t
where
Qu = uf(x)uf(x,), u? =uf(x) =uf(x,)

Note that f(r) isan even function. That is

f(r)=f(-r) r
A typical longitudinal correlation coefficient is shown in Figure 2. Schematics of
Figure 2. longitudinal correlation
coefficient.
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Definition: Lateral Correlation Coefficient

Thelatera correlation coefficient is defines as

Q - 4 g
g(r) = _222' Q,, = ug(x)ud(x,)

u,

The lateral correlation coefficient is also asymmetric
Function. That is

9(r) =g(- ) ’ ]
. | o | — g,—
A typical lateral correlation coefficient isshownin
Figure 3. Figure 3. Schematics of lateral
correlation function and the
Definition: Taylor's Microscales corresponding Taylor Scale.

The Taylor microscales are defines as

|2:_ 2 2: 2

12 =2
Tf€0)’ ¢ g%0)

where | ( and | ;are, respectively, the Taylor longitudinal and lateral microscales. The

microscales may be defined by fitting a parabolato the correlation coefficient curves at
r=0. Thatis,

o) =1+ 2 1°g0) + -+ 1-

2
2
l 9
Definition: Integral Scales, M acr oscales

The macroscales of turbulence are defined as

¥
L = ¢j (ndr = Longitudinal Macroscale
0

¥
L, = Cp(ndr = Lateral Macroscale
0
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Definition: Eulerian Time Correlation (stationary flows)

The Eulerian time correlation is defined as

R.(t) = u{t(x,t)u{lz(x,tﬂ)

1

The Eulerian time microscale t . then is given by

2 2

LT

The Eulerian time macroscale (integral scale) T, isdefined as

¥
Te = ORe (D)t
0

Using the uniform flow and frozen field approximations, the scales may be related. That
IS

L,»UT., [,»Ut., f(Ut)»R.(t)
T_ 1
qt Ix

Definition: Lagrangian Time Correlation

The Lagrangian velocity correlation is defined as

R, (t) = VEOVE(t+1)
v’

where v{ isthe Lagrangian fluctuation velocity. The corresponding Lagrangian time
microscale t, and the macroscale T, aregiven as




¥
T =R (t)dt
0

Definition: Energy Spectrum Tensor
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Energy spectrum of is defined as the Fourier Transform of the correlation tensor.

Thatis

1 +¥ Y HY

a° OOR; (e " dx

-¥-¥-¥

Eij k)=

Qij (x) = (\)(\)(\jzij (k)e’ **dk

-¥-¥-¥

Definition: One Dimensional Energy Spectrum

The one dimensional energy spectrum is defined as

2 +¥

u \ -ikx
E| (kl) = ?1 d(xl)e . ldxl
-¥

1 Hf ik ix
uif(x,) = > CE.(k,)e**dk,
-¥

Symmetry of f(x,) impliesthat

2 ¥

2u; 7,
E,(ky) = pl J (x1) cosk;x,dx,
0

¥
urf(x,) = OF: (k;) cosk,x;dk,
0

A typical one dimensional energy spectrum isshown in
Figure 4.

Setting x, equal to zero, wefind

¥
uy = OFa(ky)dk, -
0

o

(k)

o
>

ki

Figure 4. Schematics of one-
dimensional energy spectrum.



Also
1 1 9% 17,
—o=- o = KIE(k,)dk
T 2w, ulg (ko)

Example: The longitudinal correlation may be approximated as

r

f(ry=e "
The corresponding one dimensional spectrum is given as

u> 2L
E,(ky) =——7F—
p 1+Lik;
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Estimatesfor Taylor Microscales

The energy dissipation is given as

x; 9,

For isotropic turbulence, it can be shown that

e= 15n(%t) 2 = _ 15nugff 40)

It then follows that

2 2
e=30n£=30nu—2=15nu—2
f If g

Since
12 =122
Using the macroscopic estimate for the dissipation, we find
3 2
e=AL =30n—
L f
Therefore
l_f: @RLUZ
L A
Therefore,
I—f<<1 snce R, =$>>1
n
Similarly
l_g = gR'l/z
L VA

Clarkson

University

(1)

(2)

3)

(4)

(5)

(6)

(7)

(8)



Clarkson

University

It may also be shown that
|
_Q:ER[{ R, :i 9)
L A n
and
[
Tg:(%)l/4Rl--1/4 :151/4R|-1/2 (10)

From Equation (3) it follows that

I n t

where the Kolmogorov time scale is given by

t:E=\ﬁ (12)
u e

This means that the Taylor microscale is not a characteristic length of the dissipation
eddies. It, however, provides a useful artificial length scale for estimating the velocity
gradients of the small eddies when macroscopic velocity scale is used for the velocity of
the eddies. That is, Equations (1) and (11) imply that

lu¢qu¢ e u

== - ()2 13
w6 (13)
Other useful estimates are
S ¢ uc 3 2 2
iy el ~(E)2’ =~ nu_’ n~$ (14)
‘ij 'ﬂxj I L | L
Also
|_~R—1/2 ~R—l £~R-3/4 ~R-3/2 E~R—l/4~R-1/2 (15)
L | L | ’ L |
L L I
and
h?L =13 (16)



