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Special Functions

Unit step function

u(t_to):{l (2 to} A u(t-t,)

0 t<t,
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Delta Function
Dirac delta function is defined as
d ( ) A 6(t't0)
ult—t
olt—t,)= 0
(-1,)= 2
t,
Note that
[ 8t =t )at =[5t~ t,)at =1
Also

f:f(t)é(t —~t,)dt = jt°+£f(t)6(t —t,)dt =£(t, )

ty—¢€

J::o f(t1)6(t1 - tO)dtl = f(to)u(t - to)

ty



a(t-t,) = |1—|5(t ~t,) for  a#0
a
Error Function
erf(x) = J. e " dt, erfe(x)=1-erf(x )ZT'[ e U dt

erf(O) =0= erfc(m), erf(— x) = —erf(x)

Exponential Integrals

Differential Equations

Linear First-Order Differential Equations

ey =alx)

v =ce IP X, )dx +J~ Xl)dXZQ(Xl)dXI

Example

Yoiby=Qk), with y(0)=0
dx

y =, e ™Qlx, )dx,

Second-Order Differential Equations with Constant Coefficients

&y, L dy

+by=0
dx? dx y=

Form characteristic equation
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m’+am+b=0 Solvefor -~ m,m,
Different cases:

1.  m,, m, arereal and m, # m,, then
— mx m,X
y=ce " +c,e’
ii. m,=m =m ~ real, then
— mx
y=e"(c, +cx)

2
iii. m,=p+qi, m,=p-—qi,where p:—%, qzwfb—a?,then

y =e™(c, cosqx + ¢, singx)

Nonhomogeneous Second-Order Differential Equations (Particular Solutions)

2
Y oY s py =R (x)

dx dx
Loy, = Ljﬁ:“‘“"‘R(x)dx +ije_m2xR(x)dx
m, —m, m, —1m,

.y, = xem"_[e_me(x)dx - emXJ.xe_m"R(x)dx

.y, = epxsﬁje"”"R(x)cos qxdx —

e™ cosgx
; —

e ™R (x)sin gx dx

Bernoulli’s Differential Equation

&4 plx)y = Qx)y”
X

Let
vV=y

(l—n )J. Pdx dX +e

_(1-n)fQe

\'%
e(l—n )j Pdx
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Euler Differential Equation

2
xzﬁ+axﬂ+by =s(x)

dx’ dx
Change variable x =e¢'. After some algebra we find

dy oy Lo
?+(a l)dt +by—s(e)

which is a constant coefficient equation.

An alternative method that is more convenient is to assume a power law solution.
That is

y = Ax"

which leads to a characteristic equation given as
m(m —1)+am +b=0

Solving for m =m,,m,. Then

— m m
y=AXx"+A X"

Homogeneous Differential Equations
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Exact Differential Equations

M(x,y)dx + N(x,y)dy =0

with
a_M = a_N = —azq)(x’ Y)
dy 0x 0x0y
1e.
= @ s N = @ .
0x dy

The solution then is given by

d)(x, y) = const

Riccati Differential Equation

Y = Al)y’ + By +Clx)
dx
Let
—__1 &
Y A(X)V dx
Then

d>v [1dA dv _
@ {Xd_x + B(X)}d—X + A(x)C(X)V =0,

which is a linear equation.
If a solution y, of the Riccati Equation is known, then the transformation
y=y,(x)+u

leads to a Bernoulli’s Equation. i.e.,
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d—ltl = (B + 2Ay0)u +Au’

Bessel’s Differential Equation
2
ng+xj—y+([32x2 —nz)y =0
X

y=Cl, (BX) +C,Y, (BX)
where ]| (Bx), Y, (Bx) are the Bessel functions of the first and second kinds, respectively.

Generalized Bessel’s Equation

2 - 2 _ .22
y=x" (clJm (bx°)+czYm (bx“))

Modified Bessel’s Differential Equation

2
X X

y = e, (Bx)+c.K, (Bx)
where I, and K, are the modified Bessel functions.

Legendre’s Differential Equation

(%[(1 —xz)j—ﬂ +n(n+1)y=0

y=eP, (x)+e,Q, (x)

where P and Q_ are the Legendre functions and

P =1,P =x, P, :%(3x2 -1), P, :%(5x3 ~3x)
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Associated Legendre’s Differential Equation

d

dy
1-x n + 1 0
dx {( Yo } ( )]y
y=cpP’ (X) + Canm(X)
where P" and Q' are the associated Legendre functions where

Pll :(1_X2)1/2’ le :3X(1_X2)1/2, P22 :3(1_)(2),
Also
P’ =P .

n

Hermite’s Differential Equation

dy x4 ony =0
dx? X

The solutions are the Hermite polynomials, H (x). These are
H (x)=1, H,(x)=2x H,(x)=4x>-2, H,(x) =8x" —12x.

Laguerre’s Differential Equation

d2
+(1 —x)—+ny 0
dx?

The solutions are the Laguerre polynomials, L (x). These are

L, (x)=1, L(x)=1-x L,(x)=x"-4x+2.

Associated Laguerre’s Differential Equation

2

d
dx};+(m+1—x)d—z+(n—m)y:0.

X

Solutions are the associated Laguerre polynomials L7 (x) :

Lll:—]’ L12:2x—4, L22:2, L13:—3X2+18X—18,
=—6x +18, L), =-6.
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Chebyshev’s Differential Equation
d’y __dy
1-x*)—2-x—2+n’y=0.
( )dx2 dx Y
Solutions are the Chebyshev polynomials given as
T, (x) = cos(ncos ™ x), T, =1, T =x, T, =2x’ -1, T, = 4x? -3x
y= clTn(x)+B l—szn_l(x) n#0
A +Bsin™' x n=0

Here U, (x) is the Chebyshev polynomials of the second kind.

Hypergeometric Differential Equations
2
X(l—x)d—}zl+[c—(a +b+1)x]g—aby =0
dx dx

Solution is the hypergeometric function F(a,b;c;x).
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Fourier Series

f(x) =%y i(an cos% +b, sin%)

2 n=1

_ 1 nTX 1
a _IJ‘—Lf(X)COSTdX’ b _E-[

n

Fourier Cosine Series

When f(x) = f(— X)

f(x) = a_20 + ian cos%, a, = 2J‘OLf(x)cos%dx
n=1

Fourier Sine Series

When f(x)=-f(-x))

f(x)= Zb sin—— , b, ——J. sm—dx

Fourier Exponential Series

f(x)= icnei“’"" ,  where w, =28

— 1 L —iw, X
c, =L _Lf(x)e dx

Summary of Properties of Fourier Transforms

Consider the Fourier Exponential Series in the region —L <x <L

inTx

() Zc:eL -L<x<L,
L
C, _ZJ.—LG L f(x )dx

Replacing the expression for the coefficient ¢ in the series, we find
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As L — oo, ZgnAw: jgdw. Thus,
— 1 preop+e iw(x—x") ' [ . .
f (x) = ETJ-—“ J-_w e f (x )dx dw  Fourier Integral Representation

Define Fourier Transform (Exponential)

f(oo) = Ijme_i“”"f (x')dx'

00

The inverse transform is

f(x)= %{ J‘_jei‘*’* f(w)dw

The above two equations are a Fourier Exponential Transform Pair.

Fourier Integral Representation (FIR) may be restated as
_ 1 ptopto , , ,
f(x) = ETJ-—“’ J._w cos (;J(x -X )f(x )dx dw,

or

f(x)= %J_:f:(cos x cos WX +sin wx sin wx' ) (x')dx'dw.

For even functions (i.e. f (x) =f (— x)), and FIR becomes
f(x)= zr r cos wx cos x'f (x' )dx'dw
TT70 YO
Definition: Fourier-Cos Transform Pair:

f (w)= Lw cos wx'f(x')dx’

10
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f (X) = %[ J:o cos wxf_c(co)dm

For odd functions (i.e. f(x)=~f(~x)), and FIR becomes
f(x)= %{Lx J:o sin ox sin wx'f(x')dx’

Definition: Fourier-Sin Transform Pair:

f(w)= j: sin ox'f (x')dx’

f(x)= % [["sin oxf, (w)deo

Applications to Differential Equations

Fourier Exponential Transform of derivatives

D{ﬁ} = J‘*‘”e—m mdx = ioof (w)
dx — dx

o=t of =Tl

dx X

Example: Find f that satisfies the following differential equation:

2
d’f +ad—f+bf=6(x—x0)

. —00< x <400
dx dx

Take Fourier Exponential Transform

— £ (00) + aicof (w) + bf () = e

f _ e—iwxo
(® b-w +iaw
1 +oo ei(.o(x—xo)
f = -
(x) 2T[L>°b—m2 +iamdoJ

11
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Laplace Transform

Consider the class of functions, which are zero for negative x, and are defined

according to

Fx)= {F(X)e‘y" x20 y> o}

0 x<0

FIR of f(x) for x =0 becomes

F(x)e™ = %_[ f: du)'[: e IF(x )e ™ dx'

or
— 1 o (y+iw)x [* ~(y+iw)x’ ' '
F(x) =5l dae" .[0 eV F(x )dx
Let
y+iw=S§, dw= %

1

Flx)= [ s [ Pl o

Definition: Laplace Transform
l_s(s) = J:o e'SX'F(X')dx'

Inverse Transform

(o)=L [ e s

12
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Table of Fourier Exponential Transform Pair
r — O jux — L BRI
flo)= [ e f(x)dx fx)= = [ e f(wdw
f(X) f(w)
f(x)e™ fi(w+w)
f(x+x,) e £(e)
£(x)*£,(x) = [ 75 (E)f, (x ~€)ae £, ()f, (w)
6(X - Xo) e
gl 2ndw - ouo)
e 20
W +a’
COS W, X 3(cw - w, ) + 8w+ o, )
e cosPx 20‘("‘)2 +a’ +Bz)
(002 e —02)Z R
2 2
e—ax{cos Bx + Esin B|X|} 4a (G +3 )
B (wz—Bz—a2)2+40(2m2
o]l o
20 40 40
[
a P g
d (ico)
&g
J,(x) 2 <
1
—
0 elsewhere

13
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Table of Laplace Transform Pair

F(X)

o F(x) Fls-a)
T o
;’); s"F(s)-s""F(0).. - Ey ™
CIEE) dF(s)
o (—1)“%55)
7(s)

Fix “5
— L F(Sl)dsl
X
L x, x" 1 1 n
9 9
s SZ n
e™, sinax, cosax 1 a S
b
s—a SZ + aZ SZ + a'2
sinhax , coshax a S
2
SZ _ aZ S2 _a2
xsinax, X cosax 2as s? —a’
9
(Sz +a2)2 (Sz +a2)2
Jo(ax), Io(ax) 1 1
9
\/s2 +a’ \/s2 -a’
. -a/ -a/
cos2+/ax sin2+ax e ® ars
9 2 3/2
A TX VT Vs T s
— — —as
6(X a), U(X a) o ©
9
S
a’ e—a«/g

14
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Probability and Random Processes

In this section, capital letters identifies a random variable and lower case letters
are used for coordinate systems.

Distribution Function

The distribution function
of a random variable Y is
defined as the probability
that {Y < y} . That is

Fy(y)=P{Y <3}

It then follows that
F, (y) is monotonically
increasing function and

0<F,(y)<1.

Density Function

The probability density fy(y)
function is defined as

£,(y)= dF;éﬁ

Properties:

15
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Variance

o2 =By -vJ}=Efy?}-¥’

Stochastic Process

Ensembles of random functions of time (or space) are referred to as stochastic
processes. For fixed time, a stochastic process becomes a random variable. Every
sample of a stochastic process is a time function.

RO

J\xvﬁ |
\/ W/

Statistics of a stochastic process may be evaluated similar to those of a random variable.
For example, the mean value is given as

E{X(t} = J‘j:xf)( x,t) dx

Time Average

Time averaging over an interval (0,T) is defined as

i@z%fxwmzﬂxﬁ

Autocorrelation

The autocorrelation of a random process is defined as

16
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where T is the time difference, an it is assumed that X(t) is a stationary random process.
Note that

Energy Spectrum

S (@)= R, (t)ar

00

Linear Systems

Consider a linear system with impulse response h(t) and a system function H(w)
for X(O) =0 as shown schematically in the figure.

h(t
f(t) m— ( ) — X(t)
H(co)
The solution then is given as
X(t)= J:h(t - 1)f(t)dr

where

More generally,

X(t)= [ h(t - )f(c)dr =h(t)*£(t)
Taking Fourier Transform H(oo) = J._+:e _i‘*‘h(t)dt

17
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h(t)zie_z‘“’Ot sin @t w, =wy1-C

18
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Useful Integrals
Jeplekin = plc) = 1P+ ()= ()
a a a a
J‘eax sin bxdx = e™ (a sinbx —bcos bx)
- a2 +b>
J.ea" cosbxdx = e (a cosbx + bsinbx)
- a’+b’

Ixsinxdx =sinX —XCOSX
chosxdx =cosX +Xxsin x

.[lnxdx =xlnx—-x

2 2
J.xlnxdx =X—lnx——
2 4

J.x sinh xdx = x cosh x —sinh x

.[xcosh xdx = xsinh x —cosh x
J.—zdx - =ltan_l 2, I zdx . =ltanh_l oLy, xod
a“+x a a a - —x a a 2a x+ta

I x sin_l(ij
va’ -x’ a

19



Vector Identities
OmMxi=0 Ox(0¢)=0
OxOxi=0(00G)-0%

2
ﬁDDﬁ:D(u?J—ﬁX(DXﬁ)

Ox(ixv)=vi-u v+ (0 &)k -(0a)v
Ofixv)=vDxd—udxv
0@ ®)=v i +u v +vx(0xa)+ux(0x7)
Stokes Theorem
fu e = [ (O xa) s
Divergence Theorem

jv OGdV = Lﬁ [ds

20
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