Clarkson

Particle Adhesion and Detachment Models

Figure 1 shows the schematic of a particle of diameter d attached to a flat surface.
Here P is the external force exerted on the particle, a is the contact radius and F,;is the

adhesion force. The classical Hertz contact theory provides for the elastic deformation of
bodies in contact, but neglects the adhesion force. Several models for particle adhesion
to flat surfaces were developed in the past that improves the Hertz model by including the
effect of adhesion (van der Waals) force.
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JKR Model

Johnson-Kandall-Roberts (1971) developed a model (The JKR Model) that
included the effect of adhesion force on the deformation of an elastic sphere in contact to
an elastic half space. Accordingly, the contact radius is given as
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Here W, is the thermodynamic work of adhesion, and K is the composite Young's
modulus given as
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In Equation (2), E is the elastic modulus, v is the Poisson ratio, and subscript 1 and 2
refer to the materials of the sphere and substrate.

In the absence of surface forces, W, =0, and Equation (1) reduced to the
classical Hertz model. That is

al=— €)

Pull-Off Force

The JKR model predicts that the force needed to remove the particle (the pull-off
force) is given as
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Contact Radius at Zero Force

The contact radius at zero external force may be obtained by setting P = 0 in
Equation (1). That is,

a, = (—3nWAd2 )3 (5)
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Contact Radius at Separation

The contact radius at the separation is obtained by setting P = —F, ™ in Equation

(1). The corresponding contact radius is given by
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DMT Model
Derjaguin-Muller-Toporov (1975) assumed that the Hertz deformation and

developed another model that included the effect of adhesion force. According to the
DMT model, the poll-off force is given as
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Contact Radius at Zero Force

The contact radius at zero external force is given as
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) (Hertz contact radius under adhesion force) (8)

Contact Radius at Separation

The DMT model predicts that the contact radius at the separation is zero. That is

a=0 (atseparation) 9)

Maugis-Pollock

While the JKR and the DMT models assume elastic deformation, there are experimental
data that suggests, in many cases, plastic deformation occurs. Maugis-Pollock developed
A model that included the plastic deformation effects. Accordingly, the relationship
between the contact radius and external force is given as

P+aW,d=mna’H (10)
where H is hardness and

H=3Y, (11)
with Y being the yield strength.

Note that variations of contact radius with particle diameter at equilibrium, that is

in the absence of external force, for elastic and plastic deformation are different. That is
2 1

a, ~ d3 (elastic), a,~ d? (plastic) (12)
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Thermodynamic Work of Adhesion
The thermodynamic work of adhesion (surface energy per unit area) is given as

A
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where A is the Hamaker constant and z_ is the minimum separation distance.

Non-Dimensional Forms

Nondimensional form of the relationship between contact radius and the external
force and the corresponding moment are described in the section.

JKR Model
Equation (1) in nondimensional form may be restated as
a” =1-P ++1-2P° (14)

where the nondimensional external force and contact radius are defined as

P*=-3L, az% (15)
EWWAd 3nW,d? )3
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Variation of the nondimensional contact radius with the nondimensional force is shown
in Figure 2. Note that for P = 0, Equation (14) and Figure 2 shows that a, =1.26.

The corresponding resistance moment about point O in Figure 1 as a function of
nondimensional force is given as

MR =P'a" =P"(1-P" ++4/1-2P")"? (16)

Figure 3 shows the variation of the resistance moment as predicted by the JKR model.
The corresponding maximum resistance moment then is given by

M7KR = 0.42 (17)
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The resistance moment at P~ is M™%} = 0.397. Also

P a,=0.63 (19)
DMT
For DMT Model, the approximate expression for the contact radius is given as
2’ =~ (P 4w, d) (20)
2K :
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Variation of the nondimensional contact radius with the nondimensional force as
predicted by the DMT model is shown in Figure 2 and is compared with the JKR model.

Note that for P* = 0, Equation (21) and Figure 2 shows thata, = 0.874.

The corresponding resistance moment as a function of nondimensional force as
predicted by the DMT model is given as

MM = P*(2/3-P")"3 (22)

The variation of the resistance moment as predicted by the DMT model is also shown in
Figure 3. The corresponding maximum resistance moment is

MM _0.28 (23)

max

Note also that the maximum force (the poll-off force) is given by

DMT
Pl =R - — -2 (24)
7WAd
and
P’ a =0.58 25
max < 0



Comparing Equations (17) and (23) shows that the JKR model predicts a larger
resistance moment. That is

MIER — 042 =1.5M2M ) (MPMT = 0.28) (26)
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The resistance moment predicted by the JKR and the DMT models in dimensional form
are given as
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Figure 2. Variations of contact radius with the exerted force.
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Figure 3. Variations of resistance moment with the exerted force.
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