Exact Solutions to the Navier-Stokes Equation
Unsteady Parallel Flows (Plate Suddenly Set in Motion)

Consider that special case of a viscous fluid near a wall that is set suddenly in
motion as shown in Figure 1. The unsteady Navier-Stokes reduces to

Xy (M

—> U,

Figure 1. Schematics of flow near a wall suddenly set in motion.

The boundary conditions are:

Aty=0 u=U, (2)
at y=o0, u=0 3)

The corresponding initial condition for the fluid that starts from rest is given as

at t=0 u=0. ()

Similarity Solution (Group Theory)

Let
t~t', y ~t*, (5)

Equation (1) implies that

1=2a, > a=%, (6)
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Thus,

1

y~t? (7)

Now introducing the similarity variables

y u
n= 5 —=f n), (8)
ZM U, ( )
we find
ou ou 1 o'u o*u 1
o _m 1 u_Ju ©)
oy on24/vt oy~ on” 4vt
ou_ou_y (_L]:_@l (10)
ot om24/vt L 2t on 2t
Substituting (9) and (10) in Equation (1), we find
! n n 1
L N (11)
2t 4vt
or
f"+2nf'=0 (12)
Boundary and initial conditions (2)-(4) in terms of the similarity variables become
f(0)=1, f(0)=0. (13)
From Equation (12), it follows that
f” , 5
F:—2n, or Inf'=Inc—n (14)
or
_n? mo .2
f'=ce™, and f=cJ.Oe”‘dr|1+1, (15)
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where the first boundary condition in (13) is used. The second boundary condition
implies that

f(oo):0=1+cJ'wef’“zdn1 or c=—%=—i (16)
0 J'O e dn, Jn
Equation (15) then becomes
f=l—ij‘ne‘"fdn1 =1-erf(n) 17)
T
or
y
f =erfen, u = U,erfc (18)
! ’ (2\@ J

Time variations of the velocity profile as predicted by Equation (18) are shown in
Figure 2.
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Figure 2. Time variations of velocity profile.
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An alternative is to use the transform method. Taking Laplace transform of
Equation (1), it follows that

— 25
su:vg—lzl (19)
y
or
u —;uzO (20)
The solution to (20) is
u=Ae "V +Be'Y
u=A f B \f 21

Boundary conditions (2) and (3) imply that

A== B=0 (22)

u=—Cte v (23)

Inverse Laplace transform of (23) gives

u=U0erfc( Y ] (24)

24/vt

Oscillating Plate

Consider that case of a viscous fluid near an oscillating wall as shown in Figure 3.
The unsteady Navier-Stokes reduces to

My (25)



4> |, cosot

Figure 2. Schematics of flow near an oscillating wall.

The boundary conditions are:
u=U, cosmt at y=0

u=0 at y=o0

Let
u="U,e™ cos(ot—ay).
Then
e ~oU,e™ sin(ot —ay)
ou ky .
—=Uge (— k cos((ot - ay)+ a s1n(c0t - ay))
oy
82u —ky (1,2 . 2
>=U,e (k cosO—2kasinO—-a cose), 0=ont—-ay
Substituting (29)-(31) into Equation (25) it follows that
—osin0 = v((k2 —a’ )cos 0 — 2ak sin 6)
or
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27)

(28)

(29)

(30)

(€19

(32)
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aZZk2
® = 2akv = 2k’v
k= E=a

2v

Thus, the velocity profile is given as

u=U,.e™cos(ot—ky), k=, [—.

Unsteady Flow in a Tube

(36)

Consider flow in a circular tube subject to a step change in pressure as shown in

Figure 4. The Navier-Stokes equation reduces to

V_
ot p dz r or

ov, __1dp_10( v,
or

Introducing dimensionless variables,

L R L )

R’ pR? R?
we find

% _,,10(.00
ot goe\ " og )

(37

(38)

(39)

Figure 4. Schematics of flow in a tube subject to step change in pressure.



The boundary condition is

e=0at =1,

with the initial conditions

¢=0at t=0.

Let
¢=1_E.>2_\|I’

Equation (39) reduces to

oy _10 &a_w
ot EOE\ o8

The boundary and initial conditions (40) and (41) now become

At E=1, y=0.

At 1=0, y=1-8.
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(40)

(41)

(42)

(43)

(44)

(45)

To find the solution the method of separation of variable is used. That is let

v =F(E)T(x)

Equation (43) then becomes

T 1 d( dFJ ,
—=— | |=—a’.
T FEdE| " dE

From Equation (47), it follows that

T+a’T=0,

(46)

(47)

(48)
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d’F _dF
P 4 E—+a’E’F=0. 49
g i’ g i g (49)
The solutions to Equations (48) and (49) are given as
T=Ce®" (50)
F=AJ,(a&)+BY,(af), (51

where J,(ag) and Y,(a&) are Bessel function of first and second kind of zeroth order.
The boundary conditions are

F(0)~ finite =B =0 since Y,(0)— . (52)
and
F(1)=0=7,(at)=0. (53)
Equation (53) is a characteristic equation. The corresponding eigenvalues, «, , are given
as
a, =2.405, o, =5.52, o, =8.654,... (54)
The general solution for Equation (43) then is given by
v YA 0,8) (53)
Using the initial condition
1_&2 =ZAnJO(an&J) (55)
then
1
A _J‘O(l_‘toz)ﬂo(ang)dé_4J1(ocn)/oci (56)
n 1 - 2
[[er(e,eg  05Ti(e)
or
8
A =——-. 57
! a’fmJl (a’n ) ( )
Hence,



oy (0,8)
W - 82[1: a::lJI (a‘n) , (58)
and
—_1_ 2 _ JO (ana) —0o,T
(P_l & 8; O(‘31‘]1(0(‘n)e (59)

Variation of the velocity profile in the pipe is shown schematically in Figure 5.

Figure 5. Variations of velocity field in a tube subject to a step change in pressure.

Noncircular Pipe Flows
Consider steady state viscous flows in a pipe with arbitrary cross section under a

constant pressure gradient as shown in Figure 6. The Navier-Stokes equation is given as

VW = 1dP_ const . (60)

p dz
The corresponding boundary condition is

W=0 on . (61)
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Figure 6. An arbitrary cross-section pipe subject to a constant pressure gradient.

Elliptical Pipes

Consider an elliptical cross-section pipe shown in Figure 7 with its boundary

given as
x) (Y -
U *(J 1 (©2)

We assume that the velocity field is given by

w:A(l—ﬁ—y—zJ. (63)

a’ b’

Figure 7. Elliptical cross-section pipe subject to a constant pressure gradient.
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VoA 24 2o 28k 1dp (64
a~ b a’b u dz
Hence
21.2 2 2
=g S (65
2udza“+b a~ b
The flow rate is given as
Q= ” wdxdy . (66)
After integration, it follows that
n dP a’b’
__ e ) 67
Q 4u dz a’® +b’ (67)

Triangular Pipes

Consider a pipe as shown in Figure 8 whose cross section is an equilateral
triangle. The equation of the section is given as

f(x,y):(X—a)(x—\/gy+2aXx+\/§y+2a):O. (68)
Assuming
w = Af(x,y) (69)
Then

_1dp

Viw = AV*f(x,y) = 12aA :
n dz

(70)

11
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Figure 8. A triangular pipe subject to a constant pressure gradient.

Thus,

1o
12pa dx

Hence,

w = —
12pa dx

12

L dp (x —a)(x —\/§y+ 2aXx +\/§y+2a)

(71)

(72)



