
ME529     Homework 5 
 

1. The process X(t) is stationary with E{X(t)}=1, and 2( ) 1XXR e ττ −= + . Find 

the mean and variance of the random variable 
1
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2. If S(w) is the power spectrum of a given real process, show that 2
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dω

 is not a 

power spectrum. 
 
3. The power spectrum of the process X(t) is given by 
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 ( ),dY Y X t t
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+ = −∞ < < ∞  

 For the stationary response, find the power spectrum and auto-correlation of 
process Y(t).   

 
 
4. Given  
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 relate the power spectrum of Y(t) to that of X(t). For '
0( )XXS Sω = , find 

( )YYS ω  
 
5. Two random process X(t) and Y(t) are independent, and both are weakly 

stationary. 
 (a) Find the general expression for the spectral density of Z(t)=X(t) Y(t) in 

terms of ( )XXS ω  and ( )YYS ω  
 (b) Apply the general expression to the special case when 
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6. X(t) is a stationary process. Given that 
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 Determine the power spectrum of Y. 
 



7. W(t) is a stationary process with 

( )22 2
( )WWS βω

ω β
=
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, Y(t) satisfies the 

following equation: 
 ( ) ( ),Y t e d W t tβ ττ τ
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 Find ( ), ( ), { }YY YYS R E Yω τ  and 2
Yσ , Assume E{W} is given. 

 
8. Consider ( ), (0) 0dZ W t Z

dt
= =  where W(t) is a Wiener process with  

  1 2 1 2( , ) ( , )WWR t t Min t t=  
 Determine the cross correlations of Z and W, 1 2 1 2( , ) ( , )ZW WZR t t and R t t  
 
9. Random variable A is uniform in the interval (0,T)  i.e. 
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 We define two random processes 
 ( ) ( ), ( ) ( )X t U t A Y t t Aδ= − = −  
 Assume all t's are in the interval (0,T), find  
 1 2 1 2 1 2{ }, { }, { , }, { , }, { , }XX YY XYE X E Y R t t R t t R t t  
 


