Throughout the following problems $n_i(t)$ (or n(t)) denote Gaussian white noise processes with

$$E\{n_i(t)\} = 0$$
, $R_{n_i n_i}(t_1, t_2) = 2 D_{ij} \delta(t_1 - t_2)$, $D_{ij} = 0$ for $i \neq j$.

1. Suppose Z and W are two independent random variables with

$$f_{z}(z) = \begin{vmatrix} \frac{1}{4} & for & -3 \le z \le 1 \\ 0 & Otherwise \end{vmatrix}$$

$$P(W = -1) = \frac{1}{3}, \quad P(W = 1) = \frac{2}{3}$$

We define two random processes $X(t) = \delta(Z+W+t)$ and Y(t) = (Z-Wt). For $0 \le t \le 1$,

- a) Determine $E\{X(t)\}$, $E\{Y(t)\}$, and $R_{XY}(t_1,t_2)$. b) Find $P\{-1 \le Z \le 2 \cup -2 \le W \le 0\}$
- 2. Consider the following system of random equations:

$$\frac{d^2 X}{dt^2} + \frac{dX}{dt} + 2Y + \int_{-\infty}^{+\infty} (Y(\tau) + 2\frac{dY(\tau)}{d\tau}) e^{-|t-\tau|} d\tau = \frac{dn}{dt}$$

$$\frac{dX}{dt} + X(t) + \int_{-\infty}^{+\infty} \left[\frac{d^2 Y(\tau)}{d\tau^2} + Y(\tau) \right] e^{-2(t-\tau)^2} d\tau = n(t)$$

Determine $S_{XX}(\omega)$, $S_{YY}(\omega)$, $R_{XX}(\tau)$, and $E(X^2)$.

3. Consider the following random differential equation.

$$\frac{d^2X}{dt^2} + n_1(t)\frac{dX}{dt} + n_2(t)X = 0.$$

- a) Set up the Fokker-Planck equation.
- b) Drive the general moment equation, and the equations governing $E\{X\}$, $E\{X^2\}$, $E\{X^2\}$, and $E\{XX^2\}$.
- 4. Given that

$$\frac{dX}{dt} + [1 + n_1(t) + n_2(t)]X = 0$$

- a) Obtain the Fokker-Planck equation.
- b) Derive the general moment equation and the governing equations for $E\{X\}$, $E\{X^2\}$ and $E(e^X\}$.