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The Karhunen-Loeve Orthogonal Expansion

Suppose ¢, (t) are a set of orthonormal basis in the interval (0,T). A function X(t)
(deterministic or random) may be expanded as

:ch(pn(t), O<t<T, 1)

where the coefficient c,, are given by

c, = [, X(tho, (0t @

Note that the property

T .
[, 20 )y, ()t = 5, 3)
was used in the derivation of (2).

When X(t) is a random function, the coefficients ¢, become random coefficients)
variables. In the following, assume E{X}=0.

Theorem: In the expansion (1), the coefficients ¢, become uncorrelated (orthogonal)
random variables if and only if ¢, (t) are the eigenfunction of the following Fredholm’s
integral equation:

[ Rulti ), (t)=4,0,(). @)

In this case,

Ele.|*f= 4 (5)

Proof: From (1) and (2), it follows that

EX(t {c|}<p j (0o, (¢, )t (6)

where

= Ele,[ P ™
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isused. Thus A4, = E{cn|z} in Equation (4).

It may be also shown that the Karhunen-Loeve (K — L) expansion converges in
mean-square sense, i.e.

E{{X(t)—znlcngon(t)}z}zo. (8)

(See Papoulis page 304 for details.) It may also be easily shown that

L (tt) 2/1 A (9)

Stationary and Periodic Processes

If X(t) is stationary, then R, =R _(t, —t,). If in addition, X(t) is also periodic
in the mean-square sense, then

o, ()= e, =T (10)

JT T

The K —L expansion for x(t) and R, are given as
Z |na)0 1 E{Cn|2}: ﬂ,n (11)

() /1 ginenltity) (12)
1

The power spectrum of X (t) is then given by

Sxx(a)):-l-lij’né‘(a)_na)o)' (13)
Furthermore,
E&%ﬂz%i%. (14)
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Stationary Nonperiodic Processes

These may be considered to have infinite period. One may write
X(0)= [ "e“n(o)Slo)to
where n(o) is a white noise in frequency space with
Efn(e, )n(w, )} = 5, - ;)
Autocorrelation of X (t) then is given as
Rl t,)= [ [0 0, — 0, STy K, Mt
Hence,
Rul,t)= [ e s(a)do,

as is expected.

Responses of a Linear System to White Excitations
Consider a linear system

L, X(t)=n(t), X(0)=X'(0)=...=0,
with

Ron(t, )= 275,6(t, —t,)-

Solution to (18) is given by

Multiplying (20) by X(t,) and apply L,, after averaging one finds
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(15)

(16)

(17)

(18)

(19)

(20)

(21)
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LR, (tt,)=L ] ht-2)E{n(0)x t, ))dz
or

LR, (t.t,) = E{n(t)X (t, )} = 2785h(t, ~t). (22)

Tt XX

Restating equation (4) as

J.OT R (t'tz )¢(tz )dtz = 1(0(0 (23)

and applying L, and using (22), it follows that
T
_[0 278,h(t, —th(t, Jdt, = AL g(t) (24)

Operating on (24) with L, (same as L, with t being replaced by —t) and using (21), it
follows that

AL L g(t) j 275,8(t, —t)g(t, dt, = 275,0(t) (25)

Equation (25) is a differential equation for evaluating the eigenfunction (pn(t) and
eigenvalues A, . It may be shown that if L, involves derivations of the order N, then the
following boundary conditions may be used:

(o):o fori=01,.,N -1 (26)
Lo (t)h fori=01,..,N -1 (27)
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On the Convergence of Karhunen-
Loeve Series Expansion for a
Brownian Particle

W. G. Paff" and G. Ahmadi'""

A linear Langeuvin equation for the velocity of a Brownian
particle is considered. The equation of motion is solved and
the Karhunen-Loeve expansion for the particle velocity is de-
rived. The mean-square velociiy as obtained by the truncated
Karhunen-Loeve expansion is compared with the exact solu-
tion. It is shown, as the number of terms in the series increases,
the result approaches that of the exact solution asympiotically.

Introduction

Brownian motion was first observed by Robert Brown in
1827 while studving pollen particles suspended in liquid, and
Brownian diffusivity was first estimated by Einstein (1903).
An extensive exposition of the theory of Brownian motion was
provided by Chandrasekhar (1943).

Use of the Karhunen-Loeve (KL) expansion (Loeve, 1955)
for representing random data has attracted considerable at-
tention in the field of turbulence (Lumley, 1967) and other
areas (Lin and Yong, 1986). Here, the Karhunen-Loeve ex-
pansion for a Brownian particle is considered and analytical
expressions for orthogonal basis are derived. The particle ve-
locity response statistics as evaluated from the truncated series
are compared with the exact values and the convergence of the
KL series is discussed.

Analysis

Equation of Motion. The linear Langevin equation for the
velocity of a Brownian particle is given as

du
E+ﬂl¢=!‘-‘(” (1

where
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and n(r) is a zero-mean Gaussian white noise process with a
constant spectral intensity, §,, given by
. 216ukTp
oS doC,
Here, u is the kinematic viscosity, d is the particle diameter,
C. is the Cunningham correction factor, m is the mass of the
particle, » is the kinematic viscosity, k is the Boltzmann con-
stant, T is the temperature, p is the fluid density, and g, is the
particle density. A white noise process may be formally defined
as the derivative of a Wiener process (Papoulis, 1984). A digital
simulation procedure for generating white noise process cor-
responding to molecular agitation was described by Ounis et
al. (1991).
Assuming that the motion starts from rest,

w(0)=0. (4}
Equation (4) is the initial condition for particle velocity.

(3)

Karhunen-Loeve Expansion. According to the Karhunen-
Loeve Theorem (Loeve, 1955), the random velocity has a series
expansion of the form

u(1) = Ca(0) )
where $,(r) are the KL orthonormal basis and C, are inde-
pendent random coefficients. The KL basis are the eigen-
functions of the Fredholm equation given by

-
§ Ruu (1 13)®n(12)dty = M@, (1)) (6)
0

Here the kernel R, (1, 1) is the particle velocity autocorre-
lation function, and eigenvalues h, = ¢1C,1%), with “{)"
denoting the expected value (ensemble average) and T, is a
specified time duration.

Following the procedure outlined by Lin and Yong (1986),
Eq. (6) may be restated as

Lo L&,(1)= 2:5" &, (1) Q)
where
d d
L,=E+B‘ L_,=—E-rd. (8)

The required boundary conditions are
$:(0=0, L&,(T)=0. 9

The eigenfunctions for the boundary value problem, (7)-
(9), are given by

(1) =A, sin(£,0) (10)
where
278, .
=5 1
£ N B (11)
are solutions to the transcendental equation
tan(¢,T) = =1} (12)
B
The corresponding eigenvalues are
2xS,
ha=——073. (13)
B +tn

Using the normality condition,
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Table 1 Listing of first nine eigenvalues for T = &
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Fig. 1 Comparison of the mean-square velocilies for the truncated
Karhunen-Loeve series

aT
! $,(0)di=1, (14)
0

the coefficients 4, in Eq. (10) are given as

F I
A"“\&J— sin(£,7)°

et

(15)

The mean-square velocity associated with the KL series is
given by

(CHUPED IS WL NETE (16)

and the exact transient mean-square velocity response as ob-
tained by use of the impulse response method is

2 _fsu
{us(r)) = 3

(1—e~2, (17)

Results

For a nondimensional time duration of T = S, Table |
provides a listing of the first nine values of £,7 and A,. The
weightings of different modes in Eq. (15) which correspond
to eigenvalues A, can be clearly seen from this table. It is
observed that A, _ is roughly about 80 percent of ), for higher
modes. Figure | compares the dimensionless mean-square ve-
locity responses, §{u")/S,, as obtained by the truncated kL
expansion with the exact solution given by (17). The gradual
convergence of the series solution to the exact mean-square
response is clearly observed from this figure. Figure 2 shows
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Fig. 2 Variation of energy ratio with order of truncation

the energy ratio for various orders of truncation of the KL
series. Here the energy ratio is defined as the ratio of area
under the mean-squared response curve as obiained by the
truncated KL series to that of the exact one. From Fig. 2 it is
observed that the first few terms of the KL series capture most
of the energy. However, the convergence is asymptotic and a
large number of terms are needed to recover the exact result.

Conclusion

For a finite time duration, the exact Karhunen-Loeve or-
thogonal basis for Brownian particles are derived. The mean-
square velocities as evaluated from the truncated KL series
expansion are compared with the exact one. It is shown that
the first few terms of the series contains a substantial fraction
of the energy of the response. However, for a high resolution
description, consideration of a large number of terms are re-
quired.
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