

Perturbation Techniques

Consider a general non-linear system subjected to an arbitrary random excitation Y(t). That is,

$$\ddot{X} + 2\beta \dot{X}(t) + \omega_0^2 \left[X(t) + \varepsilon g(X, \dot{X}) \right] = Y(t), \tag{1}$$

with ε being a small parameter. We assume the solution to Equation (1) can be expanded in terms of powers of ε . i.e.,

$$X(t) = X_0(t) + \varepsilon X_1(t) + \varepsilon^2 X_2(t) + \dots$$
 (2)

Substituting Equation (2) in (1) and setting the coefficients of the various powers of ε equal to zero, we find

$$\ddot{X}_0 + 2\beta \dot{X}_0 + \omega_0^2 X_0 = Y(t), \tag{3}$$

$$\ddot{X}_1 + 2\beta \dot{X}_1 + \omega_0^2 X_1 = -\omega_0^2 g(X_0, \dot{X}_0), \tag{4}$$

$$\ddot{X}_2 + 2\beta \dot{X}_2 + \omega_0^2 X_2 = -\omega_0^2 \left[\frac{\partial g(X_0, \dot{X}_0)}{\partial X_0} X_1 + \frac{\partial g(X_0, \dot{X}_0)}{\partial \dot{X}_0} \dot{X}_1 \right]. \tag{5}$$

Note that we used

$$g(X, \dot{X}) = g(X_0, \dot{X}_0) + \varepsilon \left[\frac{\partial g}{\partial X_0} X_1 + \frac{\partial g}{\partial \dot{X}_0} \dot{X}_1 \right] + \varepsilon^2 [...].$$
 (6)

Now Equations (3) to (5) are linear equations and can be solved. For instance with initial conditions,

$$X(0) = \dot{X}(0) = 0, \tag{7}$$

we find

$$X_0(t) = \int_0^t h(t-\tau)Y(\tau)d\tau, \qquad (8)$$

$$X_{1}(t) = -\omega^{2} \int_{0}^{t} h(t - \tau) g \left[X_{0}(\tau), \dot{X}_{0}(\tau) \right] d\tau.$$
 (9)

Here, the impulse response function h(t) is given by

$$h(t) = \frac{1}{\Omega_0} e^{-\beta t} \sin \Omega_0 t$$
, $\Omega_0^2 = \omega_0^2 - \beta^2$ (10)

The statistics of X(t) may be determined from Equation (2). These are

$$E\{X(t)\} = E\{X_0(t)\} + \varepsilon E\{X_1(t)\} + \dots$$
(11)

$$E\{X^{2}(t)\} = E\{X_{0}^{2}(t)\} + 2\varepsilon E\{X_{0}(t)X_{1}(t)\} + \dots$$
(12)

$$R_{XX}(t_1, t_2) = E\{X_0(t_1)X_0(t_2)\} + \varepsilon[E\{X_0(t_1)X_1(t_2)\} + E\{X_0(t_2)X_1(t_1)\}] + \varepsilon^2[...]$$
(13)

Example: Duffing Oscillator

Consider a Duffing Oscillator equation with a Gaussian excitation

$$\ddot{X} + 2\beta \dot{X} + \omega_0^2 \left(X + \varepsilon X^3 \right) = Y(t) \tag{14}$$

Suppose we want to find the stationary response X(t). Assuming $E\{Y(t)\}=0$, we find $E\{X\}=0$. From Equation (12) it follows that

$$E\{X^{2}(t)\} = E\{X_{0}^{2}(t)\} + 2\varepsilon E\{X_{0}(t)X_{1}(t_{1})\} + \dots$$
(15)

For stationary response, instead of (8) and (9), we find

$$X_0(t) = \int_{-\infty}^{t} h(t-\tau)Y(\tau)d\tau = \int_{0}^{\infty} h(\tau)Y(t-\tau)d\tau,$$
 (16)

$$X_{1}(t) = -\omega_{0}^{2} \int_{-\infty}^{t} h(t-\tau) X_{0}^{3}(\tau) d\tau = -\omega_{0}^{2} \int_{0}^{\infty} h(\tau) X_{0}^{3}(t-\tau) d\tau , \qquad (17)$$

where h(t) is given by Equation (10) and we set $g = x^3$. Now

$$E\{X_0^2(t)\} = \int_{0}^{\infty} \int_{0}^{\infty} h(\tau_1)h(\tau_2)R_{YY}(\tau_1 - \tau_2)d\tau_1 d\tau_2, \qquad (18)$$

$$E\{X_{0}(t)X_{1}(t)\} = -\omega_{0}^{2} \int_{0}^{\infty} h(\tau)E\{X_{0}(t)X_{0}^{3}(t-\tau)\}d\tau.$$
 (19)

Using Equation (16), Equation (19) becomes

$$E\{X_{0}(t)X_{1}(t)\} = -\omega_{0}^{2} \int_{0}^{\infty} d\tau h(\tau) \int_{0}^{\infty} d\tau_{1} h(\tau_{1}) \int_{0}^{\infty} d\tau_{2} h(\tau_{2}) \int_{0}^{\infty} d\tau_{3} h(\tau_{3}) \int_{0}^{\infty} d\tau_{4} h(\tau_{4})$$

$$E\{Y(t-\tau_{1})Y(t-\tau-\tau_{2})Y(t-\tau-\tau_{3})Y(t-\tau-\tau_{4})\}$$
(20)

But Y(t) is a zero-mean Gaussian process. Thus,

$$E\{Y(t_1)Y(t_2)Y(t_3)Y(t_4)\} = R_{YY}(t_1 - t_2)R_{YY}(t_3 - t_4) + R_{YY}(t_1 - t_3)R_{YY}(t_2 - t_4) .$$

$$+ R_{YY}(t_1 - t_4)R_{YY}(t_2 - t_3)$$

$$(21)$$

Let in Equation (20)

$$I_4 = E\{Y(t-\tau_1)Y(t-\tau-\tau_2)Y(t-\tau-\tau_3)Y(t-\tau-\tau_4)\}.$$

Using Equation (21) we find

$$I_{4} = R_{YY} (\tau - \tau_{1} + \tau_{2}) R_{YY} (\tau_{3} - \tau_{4}) + R_{YY} (\tau - \tau_{1} + \tau_{3}) R_{YY} (\tau_{2} - \tau_{4}). + R_{YY} (\tau - \tau_{1} + \tau_{4}) R_{YY} (\tau_{2} - \tau_{3})$$
(22)

Employing (22) in Equation (20), the result becomes

$$E\{X_{0}(t)X_{1}(t)\} = -3\omega_{0}^{2} \int_{0}^{\infty} d\tau h(\tau) \int_{0}^{\infty} \int_{0}^{\infty} d\tau_{1} d\tau_{2} h(\tau_{1}) h(\tau_{2}) R_{YY}(\tau - \tau_{1} + \tau_{2})$$

$$\cdot \int_{0}^{\infty} \int_{0}^{\infty} d\tau_{3} d\tau_{4} h(\tau_{3}) h(\tau_{4}) R_{YY}(\tau_{3} - \tau_{4})$$
(23)

Recalling that

$$R_{X_0X_0}(\tau) = \int_0^\infty \int_0^\infty h(\tau_1)h(\tau_2)R_{YY}(\tau - \tau_1 + \tau_2)d\tau_1 d\tau_2, \qquad (24)$$

Equation (23) may be restated as

$$E\{X_0(t)X_1(t)\} = -3\omega_0^2 R_{X_0X_0}(0) \int_0^\infty h(\tau)R_{X_0X_0}(\tau)d\tau.$$
 (25)

Therefore, from equation (15) we find

$$E\{X^{2}(t)\} = R_{X_{0}X_{0}}(0) \left[1 - 6\varepsilon\omega_{0}^{2} \int_{0}^{\infty} h(\tau)R_{X_{0}X_{0}}(\tau)d\tau\right]$$
 (26)

Equation (26) gives the variance of X up to the first order in ε . Other statistics of X could be found in a similar fashion.