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Perturbation Techniques

Consider a general non-linear system subjected to an arbitrary random excitation
Y (t). That is,

X + 28X (t)+ o[ X (t)+ ag(X, X )| =Y (), (1)

with € being a small parameter. We assume the solution to Equation (1) can be expanded
in terms of powers of €. i.e.,

X(t)= X, (t)+ X, (t)+ X, (t)+... ()

Substituting Equation (2) in (1) and setting the coefficients of the various powers of ¢
equal to zero, we find

X0+2ﬂxo+wozxo :Y(t)' 3)
X, + 2%, + 02X, =-o29(X,. X, ), 4)
’ , ag(X,, X a9(X,, X, )

X, + 28X, + o X, =—a)§{ (8)20 °)X1+ (6)20 O)Xl] (5)

Note that we used

g(X'X):g(xo’xo)"‘{;_goxl+£(_-90X1}+52[---]- (6)

Now Equations (3) to (5) are linear equations and can be solved. For instance with initial
conditions,

X(0)=X(0)=0, 7)
we find

Xaft)=[hit - (elr, ®

X,(0)= 2 [ h(t - 2)a X, (£) X, (e ©)

0

Here, the impulse response function h(t) is given by
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h(t) = Qie‘/" sinQt, Q2 = w? - p? (10)

0

The statistics of X(t) may be determined from Equation (2). These are
E{X ()} = E{X (Of+ £ {X, ()} + . (11)
E{X2(t)}= E{X 2(t)}+ 2B {X o (t)X, (t)}+.. (12)
Rooc (1 t,) = E{X o (t)X ot )1+ e[E{X o (6 )X, (& )i+ E{X o (t)X, (4 )i]+ 6] ] (13)

Example: Duffing Oscillator

Consider a Duffing Oscillator equation with a Gaussian excitation
X + 28X + (X +eX®)=Y(t) (14)

Suppose we want to find the stationary response X(t). Assuming E{Y(t)}=0, we find
E{X}=0. From Equation (12) it follows that

X0 EX 2O+ 260, 0%, ()} +.. (19

For stationary response, instead of (8) and (9), we find

t ©

Xo(t)=__[h(t—z')Y(r)dr =Ih(r)Y(t—r)dr, (16)
X, (t)= —a)gj-h(t —)X3(c)dr = —wOZT h(z)XZ(t-7)dz, (17)

where h(t) is given by Equation (10) and we set g = x*. Now

E {X g (t)} = TT h(Tl )h(Tz )RYY (71 -7 )d rdr,, (18)

E (X, (0%, (0} =~ [ h()E X, (X2t - ) (19)
Using Equation (16), Equation (19) becomes
E{X 0 (t)Xl(t)} = _a)g J. d Th(T)J- d Tlh(Tl )_[ d z'zh(z'z ).[ d Tsh(Ts ).[ dz, h(T4 ) .

E{Y(t—rl)Y(t—T—rz)Y(t—r—z's)Y(t—T—IA)}

(20)
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But Y (t) is a zero-mean Gaussian process. Thus,

E{Y (6 )Y (8, )Y (t)Y (&, )} = Rw(tl t, Ry (ts —t,)
Ry (t —ts Ry (£, —t,) . (21)
)

-1
YY( t4 RYY(t -t )
Let in Equation (20)

L, =E{(t-z,Yt-r-7,V(t-7-2,)(t-7-7,)}.
Using Equation (21) we find
I, = RYY(T_Tl +TZ)RYY(T3 _74)
+ Ry (T — 7t 13 )RYY (Tz - z'4). (22)

+ Ry (T_Tl + z'4)Rw (72 _7'3)

Employing (22) in Equation (20), the result becomes

E{X,(t)X,(t)} —3a)0.[dzh J.J-drldr2 z)h(z, Ry (7 =7, +17,)
00

. (23)
“-dfadﬁ 2'3 RYY (Ts _74)
00
Recalling that
Ry.x, (T) = IJ h(fl )h(Tz )RYY (T 0t )d r,dz,, (24)
00
Equation (23) may be restated as
E{Xo(t)xl(t) = 3”0 XoXo _[h X ><0 (25)
0
Therefore, from equation (15) we find
E{X?(t)= Ry x, (0){1— 6c] j h(r)Ryx, (r)dz (26)
0

Equation (26) gives the variance of X up to the first order in &. Other statistics of X could
be found in a similar fashion.
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