Second-Order Systems (Stationary Solutions)
Consider a single-degree-of-freedom system with non-linear spring given as
X+ X +9(X)=n(t),

with n(t) being a Gaussian white noise with R (z)=2DdJ( 7). Equation (1) may be
restated as
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The corresponding Fokker-Planck equation is given by
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We look for special class of solutions for which

Solution to Equation (6) is given as
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Using (8) in (6) we find
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which implies
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Generalized Stationary Solutions
Consider a nonlinear system given by
X +h(H)X +g(x)=n(t)
with n(t) being a white noise, and
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Equation (1) may be restated as
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The corresponding Fokker-Planck equation is given as
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For stationary conditions, we find
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We assume that f = f(H), then
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Equation (6) is now identically satisfied and Equation (7) becomes
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Additional Exact Steady Solutions

Consider a nonlinear system given as
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Solution:
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Consider
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with
R, (r)=2Dd5().
Solution:

f= Aexp{— (x4 + X+ x2>'<2)}(x2 +2X2)

Caughey & Ma, (Int. Y. Nonlinear Mech. 17, 137 (1982)) more generally considered
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The corresponding Fokker-Planck equation is given as

2
ﬂ:—xﬂ+i Hxh(H)—ﬁ DX+ P | +Dg,
ot OX OX H, H, OX

X X




with H(x,x)>0, H, >0.

For steady solution
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The exact solution is given by

f=C, exp%joH h(é)df}HX.

Consider
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Then

Exact Solutions (Yong & Lin, J. Appl. Mech. June (1987) 414-418)

Consider
X + () +n @)X + @?[L+n,(t)]X =n,(t)
where
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The corresponding Fokker-Planck Equation is given as
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Note that the corresponding Ito equation (with Wong-Zakai correction) is given as
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the exact solution is

f(x,x)= G ] exp{_ er} .
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the solution is

f=C, exp{— 2/3 (X 1w’ X 2)} , (Gaussian).
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and n;, n;, and &; are independent white noise processes with
<nij (t)n(t+ 17)> =2D,,8(1),
(my(Eny (t+ 7)) = 2D,8(c),
(g;(t)e;(t+1)) = 2D45(x).

The exact solution is
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