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Fokker-Planck Equation
Given Ito’s equation

dX

S =9k t)+Gen, €
or

dX = g(x,t)dt + G(x,t)-dW, )
with

Efn,(t+ 7)n, 1} = 2,5(0) ®
or

E{dW,dw, | = 2D, dt . 4)

We now prove the following important theorem.
Theorem

The joint density function f, (x,t), with X (t) being solution to Equations (1) or
(2), satisfies the Fokker-Planck (Smoluchowski) equation given as,

-5 lo,e01)- £3 7 fleoT) 1] ©)
Proof: Recall
f(x,t)= E{5(x(t)-x)},
of 0

—dt= F E{5(X —x)}dt

ot
= {Z—b(x X)X += ZZ axax )]dXdX }

j
or
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%dt { Z@%{a(x - x)(g (xt)dt + Zk:ijde H

]

_ZZMX[ x)[gi(x,t)dt+Zk:Gidekj(gjdt+;GJ,dW/ﬂ}

Noting that dW, is independent of X(t), and using (4) we find

%:‘Zﬁ( 1)+ Zzax ox, HZZGG‘DH

Moments of Fokker-Planck Equation
Given Ito’s equation

W,

aX, ZGU X, t)—- d (1)

ot
. aw; | . . : : -
with n,(t)= d_tl being white noise processes with the statistics

E{ni (t)} =0, E{ni (tl)nj (tz )}: 2Dij5(tl _tz) (2)

The corresponding Fokker-Planck equation is given by

%:_Zai DRI —[eoe), 1], ®)

xé’x

The expected value of an arbitrary function h(X) is given by

b= [ T (] g0t ) (g1 XX (4)

Time rate of change of (4) is given as

J.m I —f (X, t, Jdxdx, . (5)

Eliminating % between Equations (4) and (5), we find
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. _Zh(X)OT
—Eh S=[ ] B f (X, t, Jdxdx, . (6)

sz:h(x) ax (epeT), 1)

]

Integrating by part, we obtain

d 6 h
E{—g,(x,t)}+ E GDG' 7
Equation (7) is a general moment equation.

Example

Find the moment equation corresponding to the first order non-linear system
given by

X =X (t)+ax(t)]+n(t), R, (r)=2D5(z). ©8)
In this case
g=—(X+ax?®), G=1.
For a general first order system
X =g(X,t)+G(X,t)n(t), (9)

the moment equation (7) reduces to

d oh o°h
—E{h(X)}= + DE{G? : 10
ey -{2of s oefer 20 a0
2
Forh(X )= X*, we find, My, O =k(k —1)x*? and.
OX X%

m, =KE{X “‘g}+ DE{G?X* 2 k(k -1), m, =E{X*}. (11)
For Equation (8), the result is

m, =—k(m, +am,_,)+ Dk(k —=1)m, ,. (12)
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For k =1,2,..., equation (12) generates the hierarchy of the moment equations. These are

k=1m = _(ml(t)+ ama(t))’ (13)
k=2 rm, =-2(m,(t) + am,(t)) + 2D, (14)
k =3 m, =-3(m,(t)+am,(t))+6Dm,. (15)

Clearly equations (13) through (15) are coupled and a closure assumption is needed.

One possible assumption is

{mg =a, +am, + azmz} (16)

m, =b, +b,m, +b,m,

where a’s and b’s are constant coefficients. These coefficients may be estimated by
minimizing the following mean-square errors:

ng X —a,—aX —a,X2f _ 17)
e? =E{X* by —b,X —b,X )
That is, by setting

oel . oOe,

—1 -0, =0,i=012. (18)
04, ob,

Alternative closure scheme is to assume X (t) is quasi-Gaussian. i.e.,

=0
{ﬂui 3;12}’ (19)

where 4 ’s are central moments.

Hy = E{(X - ml)z}: m, —m,m, —2m/ . (20)
u, = E{X -=m,)*{=m, —4mm, + 6m’m, — 3m/
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Probabilistic responses of base-isolated structures: Lin Su and G. Ahmadi
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Figure 7 RMS responses for Mexico City 1985 earthquake

Gaussian statistics of the response used in the lineariza-
tion scheme.

From Figure 7 it is observed that the LRB system
significantly amplifies the RMS response of the struc-
ture for this long period earthquake due to resonance.
The EDF and the SR-F1 base isolation systems also do
not reduce the RMS deflection, velocity and acceleration
responses of the structure. The R-FBI and the SR-F2
base isolators are the only ones which appear to reduce
the deflection, velocity and acceleration RMS response
o a certain extent.

Figure 7 shows that the peak RMS displacement
response for the LRB system reaches about 30 cm due
to the resonance between the earthquake excitation and
the base isolator. The corresponding RMS base
displacement for the R-FBI/SR-F2 systems is about
22 cm. The linearization methods predicts RMS base
displacements of about 3 1o 4 cm for the EDF and the
SR-F1 base isolation systems. The Monte-Carlo simula-
tions, however, lead to a relatively large residual base
displacement of about 10 cm. The discrepancy is due to
the approximations involved in the Gaussian lineariza-
tion method and in estimating the mean stick-slip
parameter™, It is observed from Figure 6, that large
base displacement occurs at r = 24 (about the time of
peak excitation) which essentially remains as a residual
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base displacement. This peculiar behaviour is not pro-
perly accounted for in the present linearization
method. From Figure 7, it is also observed that the RMS
responses reach their peak values at about 20 to 22 s and
then decay rapidly and approach their stationary limits.

Response spectra

The 3o-estimates are used in this section for evaluating
peak structural responses. The statistically evalued
response spectra for various base-isolated structures are
shown in Figure 8 by the solid lines. The response spec-
tra for the fixed-base structure are also reproduced in
this figure for comparison. The dashed lines in Figure
8 correspond to the peak responses obtained for the
accelerogram of the N9OW component of Mexico City
1985 earthquake.

Figure 8 shows that as T, increases the peak struc-
tural deflections and velocities increase, while the peak
accelerations remain almost constant. The three standard
deviation estimates provide realistic upper bounds on the
peak responses for the base-isolated structure under the
Mexico City 1985 earthquake excitation. It is also

‘observed from ths figure that peak responses for the

base-isolated structure with the LRB, the EDF and the
SR-F1 systems are higher than those of the fixed-base
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Figure 8 Variations of peak responses of structure with its natural period for Mexico City 1985 earthquake

structure by a factor of 1.2 to 2.5. Thus. the base isola-
tion systems appear not to function properly for this
long-period earthquake.

Figure 8(d) compares the peak base displacements of
various base-isolated structures. The statistically
estimated peak base raft displacements appear to be in
reasonable agreement with those obtained for the actual
Mexico City 1985 earthquake accelerogram. This figure
also shows that the peak displacements are almost cons-
tant for the entire range of the natural period considered.
It is also observed that the SR-FI and the EDF systems
generate the lowest maximum base displacements
among the isolators considered while the LRB system
produces the largest one.

The presented results show that the base isolated
structures are quite sensitive to long period ground
excitations. Therefore, the use of base isolation systems
with the typical values of parameters as listed in Table
2 in regions which have the potential of generating
earthquakes with considerable energy at low frequencies
should be avoided. It is. of course, conceivable that new
base isolation systems may be developed. or the existing
ones may be redesigned in order to reduce the sensitivity
to long period ground excitations.
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Conclusions

Earthquake responses of a base-isolated shear beam
structure with different base isolation systems have been
probabilistically analysed. In contrast to the earlier
studies which used simple white or filtered white noise
ground motion models, here, the recently developed
madels with evolving amplitude and frequency for the El
Centro 1940 and the Mexico City 1985 earthquakes are
used as seismic excitations. The method of time-
dependent equivalent linearization is utilized and the
mean-square response statistics of the base-isolated
shear beam structure are evaluated. Statistically
estimated peak responses of the base-isolated structure
are compared with the response spectra for actual earth-
quake accelerograms.

Based on the results presented, the following conclu-
sions may be drawn

¢ The nonstationary (quasi-Gaussian) equivalent
linearization technique combined with the second-
order moment equations provides a systematic and
computationally efficient tool for response analysis
of base-isolated structures to random earthquake
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