Markov Processes

Definition: A stochastic process X(t) is called a Markov process if for every n and for any $t_1 < t_2 < ... < t_n$, its conditional probability satisfies

$$P\{X(t_n) \le x_n \mid X(t_{n-1}), X(t_{n-2}), ..., X(t_1)\} = P\{X(t_n) \le x_n \mid X(t_{n-1})\}.$$

In other words

$$P\{X(t_n) \le x_n \mid X(t) \text{ for all } t \le t_{n-1}\} = P\{X(t_n) \le x_n \mid X(t_{n-1})\}.$$

Properties:

- i) If X(t) is a Markov process, then it is also Markov in reverse. That is, $P\{X(t_1) \le x_1 \mid X(t) \text{ for all } t \ge t_2\} = P\{X(t_1) \le x_1 \mid X(t_2)\}.$
- **ii)** For a Markov process, the future is independent of the past under the given condition of present.
- iii) If for any $t_1 < t_2$, $X(t_2) X(t_1)$ be independent of X(t) for $t \le t_1$, then X(t) is a Markov process. Thus, independent increment processes (such as Poisson and Wiener-Levy processes) are Markov processes.
- iv) If X(t) is a Markov process, then $E\{X(t_n) | X(t_{n-1}), ..., X(t_1)\} = E\{X(t_n) | X(t_{n-1})\}$.
- v) A Markov process X(t) is always associated with a first-order equation

$$\frac{dX}{dt} - \beta(X, t) = j(t), \text{ with } j(t) = \frac{dW}{dt} \text{ or } j(t)dt = dW,$$

where W(t) is an independent increment process (i.e. $j(t_1)$, $j(t_2)$, ..., $j(t_n)$ are independent random variables for any t_1 , t_2 ,..., t_n and any n).

The solution to the first-order equation is formally given as

$$X(t) = X(t_0) + \int_{t_0}^t \beta(X(\tau), \tau) d\tau + \int_{t_0}^t j(\tau) d\tau.$$

Thus $X(t_1)$ is uniquely determined from $X(t_0)$ and j(t) with $t_0 < t \le t_1$. $X(t_0)$ depends on j(t) for $t \le t_0$ and hence is independent of j(t) for $t > t_0$. Thus, given $X(t_0)$ the past of the process X(t) (i.e. X(t) for $t < t_0$) has no effect on the future of X(t) (i.e. for $t > t_0$). That is, X(t) is a Markov process.

vi) A continuous random process X(t) is said to Markovian if its conditional probability density satisfies the relation

$$f_{\mathbf{X}}(x_n, t_n \mid x_{n-1}, t_{n-1}; ...; x_2, t_2; x_1, t_1) = f_{X}(x_n, t_n \mid x_{n-1}, t_{n-1}) \text{ for any } t_1 < t_2 < ... < t_n.$$

vii) The following relationships hold for a Markov process:

a.
$$f_{\mathbf{X}}(x_1, t_1; x_2, t_2; x_3, t_3) = f_{\mathbf{X}}(x_3, t_3 \mid x_2, t_2) f_{\mathbf{X}}(x_2, t_2 \mid x_1, t_1) f_{\mathbf{X}}(x_1, t_1),$$

b.
$$f_{\mathbf{X}}(x_1, t_1; ...; x_n, t_n) = f_X(x_n, t_n \mid x_{n-1}, t_{n-1})...f_X(x_2, t_2 \mid x_1, t_1)f_X(x_1, t_1),$$

where $f_X(x_n, t_n | x_{n-1}, t_{n-1})$ is called the transition probability density.

c. If
$$X(0) = x_0$$
, then $f_X(x_1, t_1) = f_X(x_1, t_1/x_0, 0)$.

Thus, a Markov process X(t) is fully specified in any of the following three equivalent ways:

- i) Given the first-order density and the transition probability density.
- ii) Given the second-order density $f_{\mathbf{x}}(x_1,t_1;x_2,t_2)$.
- iii) Given the transition probability density and X(0).

The Chapman-Kolmogorov-Smoluchowski Equation

For any continuous random process

$$f(x,t/x_0,t_0) = \int_{-\infty}^{+\infty} f(x,t;x_1,t_1/x_0,t_0) dx_1$$

=
$$\int_{-\infty}^{+\infty} f(x,t/x_1,t_1;x_0,t_0) f(x_1,t_1/x_0,t_0) dx_1$$

For a Markov process

$$f(x,t \mid x_1,t_1;x_0,t_0) = f(x,t \mid x_1,t_1).$$

Thus,

$$f(x,t \mid x_0,t_0) = \int_{-\infty}^{+\infty} f(x,t \mid x_1,t_1) f(x_1,t_1 \mid x_0,t_0) dx_1.$$

This integral equation for the transition probability density of a Markov process is called the Chapman-Kolmogorov-Smoluchowski equation.

Fokker-Planck Equation

It may be shown that the transition probability density must satisfy the following (forward) Fokker-Planck equation

$$\frac{\partial f}{\partial t} = -\frac{\partial}{\partial x} \left[\alpha_1(x,t) f \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[\alpha_{11}(x,t) f \right].$$

Here α_1 and α_{11} are the incremental moments defined as

$$\alpha_1(x,t) = \lim_{dt \to 0} \frac{1}{dt} E\{dX(t) | X(t) = x\},$$

$$\alpha_{11}(x,t) = \lim_{dt\to 0} \frac{1}{dt} E\{ [dX(t)]^2 \mid X(t) = x \}.$$

The Kolmogorov (Backward) equation is given as

$$\frac{\partial f}{\partial t_0} + \alpha_1(x_0, t_0) \frac{\partial f}{\partial x_0} + \frac{\alpha_{11}(x_0, t_0)}{2} \frac{\partial^2 f}{\partial x_0^2} = 0$$

Note that

$$f = f(x, t \mid x_0, t_0).$$

Example: Determine the Fokker-Planck equation for the Wiener-Levy process and find the transition probability density function.

Recalling that

$$E\{W(t)\}=0$$
, $E\{W^{2}(t)\}=2Dt$, $R_{WW}(t_{1},t_{2})=\begin{cases} 2Dt_{1} & t_{2} \geq t_{1} \\ 2Dt_{2} & t_{1} \geq t_{2} \end{cases}$,

and

$$E\{W(t_2)-W(t_1)\}=0$$
, $E\{W(t_2)-W(t_1)\}^2=2D(t_2-t_1)$ for $t_2>t_1$.

Let

$$t_2 = t + dt$$
, $t_1 = t$, $dW = W(t + dt) - W(t)$

Thus

$$E\{dW\} = 0, E\{(dW)^2\} = 2Ddt$$

Now

$$\alpha_1 = \lim_{dt \to 0} \frac{1}{dt} E\{dW \mid W\} = 0,$$

$$\alpha_{11} = \lim_{dt\to 0} \frac{1}{dt} E\{(dW)^2 \mid W\} = 2D.$$

The corresponding Fokker-Planck equation then becomes

$$\frac{\partial f}{\partial t} = -\frac{\partial}{\partial x} (\alpha_1 f) + \frac{1}{2} \frac{\partial^2}{\partial x^2} (\alpha_{11} f) = D \frac{\partial^2 f}{\partial x^2}.$$

Using w for Wiener process instead of x, it follows that

$$\frac{\partial f}{\partial t} = D \frac{\partial^2 f}{\partial W^2}.$$

For $f(w,t_o/w_o,t_o) = \delta(w-w_o)$, the solution becomes

$$f = \frac{e^{-\frac{(w-w_o)^2}{4D(t-t_o)}}}{\sqrt{4\pi D(t-t_o)}}.$$

Fokker-Planck Equation for a Vector Markov Process

The transition probability density function of a vector Markov process $\mathbf{X}(t)$ satisfies the following Fokker-Planck equation:

$$\frac{\partial f}{\partial t} = -\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} \left[\alpha_{j}(\mathbf{x}, t) f \right] + \frac{1}{2} \sum_{i} \sum_{j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \left[\alpha_{ij}(\mathbf{x}, t) f \right].$$

The incremental moments α_j and α_{ij} are given as

$$\alpha_{j} = \lim_{dt \to 0} \frac{1}{dt} E\{dX_{j}(t) | \mathbf{X}(t) = \mathbf{x}\},$$

$$\alpha_{ij} = \lim_{dt \to 0} \frac{1}{dt} E \left\{ dX_i(t) dX_j(t) \mid \mathbf{X}(t) = \mathbf{x} \right\}.$$

Fokker-Planck Equation for Ito's Equation

Consider Ito's equation

$$\frac{d\mathbf{X}}{dt} = \mathbf{g}(\mathbf{X}, t) + \mathbf{G}(\mathbf{x}, t) \cdot \mathbf{n}(t)$$

or

$$\frac{dX_i}{dt} = g_i(\mathbf{X}, t) + \sum_i G_{ij}(\mathbf{X}, t) n_j(t)$$

or

$$d\mathbf{X} = \mathbf{g}(\mathbf{X}, t)dt + \mathbf{G}(\mathbf{X}, t) \cdot \mathbf{dW}.$$

Here, **n** and **W** are vector white noise and Wiener process with

$$E\{n_i\} = E\{dW_i\} = 0$$

$$E\{n_i(t+\tau)n_j(t)\} = 2D_{ij}\delta(\tau), \ E\{dW_idW_j\} = 2D_{ij}dt.$$

The incremental moments are then given as

$$a_{j} = \lim_{dt \to 0} \frac{1}{dt} E \{ dX_{j} \mid \mathbf{X} = \mathbf{x} \} = g_{j}(x, t),$$

$$a_{ij} = \lim_{dt \to 0} \frac{1}{dt} E \left\{ dX_i dX_j \mid \mathbf{X} = \mathbf{x} \right\},\,$$

$$dX_{i}dX_{j} = g_{i}g_{j}(dt)^{2} + g_{i}\sum_{k}G_{jk}dW_{k}dt + g_{j}\sum_{k}G_{ik}dW_{k}dt + \sum_{k}\sum_{\ell}G_{ik}G_{j\ell}dW_{k}dW_{\ell}.$$

Then

$$\alpha_{ij} = 2\sum_{k} \sum_{\ell} G_{ik} G_{j\ell} D_{k\ell} = 2 (\mathbf{G} \cdot \mathbf{D} \cdot \mathbf{G}^{T})_{ij}$$

The Fokker-Planck equation then becomes

$$\frac{\partial f}{\partial t} = -\sum_{i} \frac{\partial}{\partial x_{i}} \left[g_{j}(\mathbf{x}, t) f \right] + \sum_{i} \sum_{j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \left[\left(\mathbf{G} \cdot \mathbf{D} \cdot \mathbf{G}^{T} \right)_{ij} f \right].$$

Example

Consider a first order system

$$\frac{dx}{dt} = g(x,t) + G(x,t)\frac{dW}{dt}. \qquad E\{(dW)^2\} = 2Ddt.$$

The Fokker-Planck equation is given by

$$\frac{\partial f}{\partial t} = -\frac{\partial}{\partial x} (gf) + D \frac{\partial^2}{\partial x^2} (G^2 f).$$

For stationary solution we find,

$$\frac{d}{dx}\left[-gf+D\frac{d}{dx}(G^2f)\right]=0,$$

$$-gf + D\frac{d}{dx}(G^2f) = c_1 = 0,$$

Let

$$G^2f=F,$$

$$D\frac{dF}{dx} = \frac{g}{G^2}F,$$

$$\frac{dF}{F} = \frac{g}{DG^2} dx,$$

$$F = C \exp\left\{+\int_0^x \frac{g(x_1)}{DG^2(x_1)} dx_1\right\},\,$$

and finally

$$f = \frac{c}{G^2} \exp \left\{ \int_0^x \frac{g(x_1)}{DG^2(x_1)} dx_1 \right\}.$$