Analysis of Linear Systems

Deterministic Systems

Consider a linear system

with

Formally we may write
h(t) = L*8(t).
Similarly,

Y(O)=L'X ()= [ X(#)s(t-c)dr = [ X ()8t - r)de

0 —00

or

Y (t) = f:h(t - r)X (r)d T.

Noting that X (t)=h(t)=0 for t <0, we find

Y(t)= j; h(t—7)X(z)dz .
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This equation is the basis for the analysis of deterministic (or random) linear systems.
When X(t) act for —oo <t < +oo, then equation (7) must be used. Alternatively,
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Y(t)= [ h(e)X (t-z)dz. )

Random Linear Systems

Consider a linear system which is identified by its impulse response h(t) or its
system function H(w) (or H(iw)). Note that

H(o)=H(iw)= [ h(tle " dt. (10)
Stationary Response Analysis

Suppose X (t) is a stationary input and Y (t) is a stationary response, then

Y(t)= J.j:h(t —7)X(z)dr = J.Mh(z')X (t—z)dz. (11)

—00

Note that h(t)= 0 for t < 0. Thus Equation (11) is equivalent to

Y(t)= J-_tooh(t—r)X (r)dz = J.(:Ooh(r)X (t—z)dz. (12)

Mean of Y(t)

Taking expected value of (11), we find

EfY (0} = [ h()E{X(t-&)idr =y [ h(z)dz =7, H(0). (13)

—00

Autocorrelation and Cross-Correlation

Multiplying (11) by X (t — ) and taking expected value we find

E{Y (OX(t-0)f= [ E{X(t-a)X (t—z)h(a)da (14)
or

R (7)= | R (r=ah(@)dar = Ry () *h(z). (15)

That is, the cross-correlation of Y and X is the convolution of R,, () and h(r).
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Multiplying (11) by Y (t + 7) and taking expected value, the result is

EY (t+ o)V ()= [ EN(t+ o)X (- a)h(a)dr,

or

Ry (r)=[ Ryt +a)h(ala = [ Ry (r-a)h(-a)da. (16)
That is,

Ry (t)=Ry (r)*h(-17). (17)

Similarly, one may show

Ry (7)=Ryx () *h(=7), (18)
and

Ry ()= Ry (7)*h(z). (19)
Thus,

Ry (7)= Ry (z)*N(z)*h(~7). (20)

Clearly, stationary input produces stationary input for a linear system.
System Identification
For a white noise input with R, (r)=&(z), Equation (15) yields
Ry (7)=h(z).

Thus, evaluating

EfY (t+ )X (1)) ~ Tl [Y @+ o)Xt~ Ry, (),

gives the impulse response.
Power Spectrum

Recalling that the Fourier transform of the convolution of two functions is the
product of their Fourier transforms, from (15) it follows that
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Svx (a)) = Syx (a))H (a)) (21)

Similarly, from (7), (18), (19), and (20) one finds

Syy (a)) = Sy (a))H ) (0)) ' (22)
Sxy (a’) =Sy« (a))H ’ (a’) , (23)
Syy (a)): Sy (w)H*(a))1 (24)

and

2

Syy (a’) =Sy (a))|H ((0)' - (25)

In these equations, H () is the system function defined by Equation (10) and H" (@) is
its complex conjugate. i.e.,

H' (@)= [ "h(-zle™dz = h(z)e"dz. (26)

Furthermore, Impulse response function and the system functions are Fourier pair. That
is,

h(t) = % e H(o)o. 27)

Spectral Relationships

Given a linear differential equation with constant coefficients

n n-1
dy OI—Y+...+a0Y=X(t,),

g A g

the system function is given as

1

Hlw)= a(io) +..+a,

More generally, taking Fourier transform
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where H() is the system function. The expected value of Y, E{Y }, then is given as

and the power spectrum of the response then is given by

Syy (a)) = Syx (a))|H (0))2 -

Example: Langevin’s Equation (Brownian Motion)

The equation of motion of a Brownian particle is given as
c:j_\t/_yﬂ\/:n, E{n}:O, Snn(W)=0£.

The power spectrum of V is then given as

2 B 1 2 1
va(a))_|H(a)] Snn(a))' H(a))_ ia)-l-ﬂ’ |H(a))| Py +ﬂ2
Therefore,
. (04
SVV (W)_ a)z +ﬂ2 )

The corresponding autocorrelation of V becomes
Ry (T) = ieiﬂ‘r‘ )

and
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Examples of Stochastic Response Analvyses

Motions of small particles in a turbulent simple shear'ﬂoﬁr field
under microgravity condition

Hadj Ounis and Goodarz Ahmadi
Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, New York 13699

(Received 20 December 1989; accepted 6 July 1991)

Motions of small rigid spheres in a turbulent flow field in the presence of a uniform mean shear
and in the absence of gravitational effect are studied. The particle equation of motion, which
includes the Stokes drag and the Saffman lift force effects, is treated as a stochastic differential
equation. The spectral method is used and analytical expressions relating the components of
particle response statistics to that of the flow field are developed. The particle spectral
intensities, autocorrelation functions, and mean-square velocities, as well as particle
diffusivities for different particle relaxation times and mean shear rates are evaluated. It is
shown that the presence of a mean shear field enhances the particle diffusivity in the transverse
direction. Experimental observations of particle mass diffusivity greater than that of the fluid
particle may then be explained by this shear-induced enhancement.

1. INTRODUCTION ity tensor. Tavoularis and Corrsin**** used analytical and
Understanding the dispersive action of turbulence in experimental methods for evaluating the heat diffusivity ten-

free shear flows (jets and wakes) and wall bounded shear ~ SOf in a turbulent simple shear flow field in the presence af a

fields (pipes and channels) has attracted considerableatten- "~~~ 7" T ’

tion in the past three decades. Extensive reviews of literature
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FIG. 6. Variations of particle diffusivity components with shear rate.

components (D%, + D%, ) is negative and its amplitude in-
creases with 7,,.

Variations of components of the particle mass diffusiv-
ity with shear rate for different particle relaxation times are
shown in Fig. 13. The axial component of diffusivity has a
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An empirical expression for the (two-sided) power spectrum of the fluc-

200.0 . e tuating part of the along wind velocity, which was used by Yang and Lin

' F (1981a.b). is given as
Sw) 2 22
Sulw) = S = LI a @ v (194)
6000w
il B = T (19b)
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