Several Random Variables

Given a probability experiment J:(S,F,P), a random vector
X(&)= (X, (&), X,(&),..., X ,(&)) is defined as a mapping of the probability space unto a

point of the n-dimensional Euclidean space R". That is X(f) is defined by a certain rule
forevery £ €S.

Joint Distribution Function

The joint distribution of n random variables X,, X,, ..., X, is defined as
Fo (X000 X, ) = P{X, <X X, <X,
Joint Density Function
The joint density function is defined by
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Independent Random Variables
The random variables X,, X,, ..., X, are said to be independent if the events

X, <x},....{X, <x,} are independent for any x,,...,X, .

If X,;, X,, ..., X, areindependent random variables, then

n
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and



Expected Value

The expected value is defined as
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Covariance

The covariance of two random variables X; and X is defined as
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Characteristic Function

The joint characteristic function is defined as
D (..., 0, ) = Efe@Xsron) = Elgiox |
The characteristic and the density function of Fourier transform pair, i.e.
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If X, X,,..., X, are independent random variables, then

(D(a)l,...,a)n): d)l(a)l)...d)n(a)n).



