# ME 529 - Stochastics Clarkson Several Random Variables

Goodarz Ahmadi

Department of Mechanical and Aeronautical Engineering
Clarkson University
Potsdam, NY 13699-5725

ME 529 - Stochastics

G. Ahmad

#### Several Random Variables Clarkson

#### **Outline**

- > Several Random Variables
- > Joint Distribution, Density Functions
- > Independent Random Variables
- > Expected Value
- **≻** Covariance
- > Joint Characteristic Function

ME 529 - Stochastics

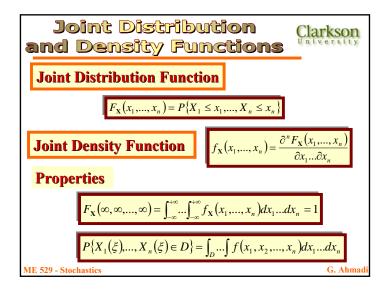
G. Ahmad

### Several Random Variables Clarkson

Given a probability experiment  $\Im$ : (S, F, P), a random vector  $X(\xi) = (X_1(\xi), X_2(\xi), ..., X_n(\xi))$  is defined as a mapping of the probability space unto a point of the n-dimensional Euclidean space  $R^n$ . That is  $X(\xi)$  is defined by a certain rule for every  $\xi \in S$ .

ME 529 - Stochastics

G. Ahmad



#### **Independent Random Variables**

Clarkson

The random variables  $X_1, X_2, ..., X_n$  are said to be independent if the events  $\{X_1 \le x_1\}, ..., \{X_n \le x_n\}$  are independent for any  $x_1, ..., x_n$ .

$$F_{\mathbf{X}}(x_1, x_2, ..., x_n) = F_1(x_1)F_2(x_2)...F_n(x_n)$$

$$f_x(x_1, x_2,..., x_n) = f_1(x_1)f_2(x_2)...f_n(x_n)$$

ME 529 - Stochastics

G. Ahma

#### Several Random Variables Clarkson

**Expected Value** 

 $E\{g(X_1,...,X_n)\} = \int_{-\infty}^{+\infty} ... \int_{-\infty}^{+\infty} g(x_1,...,x_n) f_X(x_1,...,x_n) dx_1...dx_n$ 

Covariance

 $c_{ij} = E\{(X_i - \eta_i)(X_j - \eta_j)\} = E\{X_i X_j\} - \eta_i \eta_j$ 

 $\eta_i = E\{X_i\}$ 

ME 529 - Stochastics

G. Ahmad

## Joint Characteristic Function

Clarkson

 $\Phi_{\mathbf{X}}(\omega_1, ..., \omega_n) = E\left\{e^{i(\omega_1 X_1 + ... + \omega_n X_n)}\right\} = E\left\{e^{i\boldsymbol{\omega} \cdot \mathbf{X}}\right\}$ 

**Characteristic and Density Function of Fourier Transform Pair** 

$$\Phi_{\mathbf{X}}(\mathbf{\omega}) = \int_{-\infty}^{+\infty} ... \int_{-\infty}^{+\infty} e^{i\mathbf{\omega} \cdot \mathbf{x}} f_{\mathbf{X}}(\mathbf{x}) dx_1 ... dx_n$$

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^n} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} e^{-i\mathbf{\omega} \cdot \mathbf{x}} \Phi_{\mathbf{x}}(\mathbf{\omega}) d\omega_1 \dots d\omega_n$$

ME 529 - Stochastics

G. Ahmad

#### Several Random Variables

Clarkson

If X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>n</sub> are independent random variables

$$\Phi(\omega_1,...,\omega_n) = \Phi_1(\omega_1)...\Phi_n(\omega_n)$$

ME 529 - Stochastics

G. Ahmadi

## Several Random Variables Clarkson

#### **Concluding Remarks**

- > Several Random Variables
- > Joint Distribution, Density Functions
- > Independent Random Variables
- > Expected Value
- > Covariance
- > Joint Characteristic Function

ME 529 - Stochastics

G. Ahmad

