
Transformation of Random variables 
 
 
Function of One Random Variable 
 
 Given that ( ) ( )[ ]ξξ XgY =  and the probability distribution of X  find the 
probability distribution of X , we would like to find the probability distribution of Y . 

 
By definition 
 
 ( ) ( ){ } ( )( ){ }yXgPyYPyFY ≤=≤= ξξ . 
 

Since the statistics of ( )ξX  is known, the last term, namely, ( ){ }yxgP ≤  could be 
determined in terms of y .  When ( )yFY  is known, then the density function may be 
found.  That is,  
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Fundamental Transformation Theorem 
 
 Given ( )xf X  and ( )XgY = , then as the probability density function Y  is given 
as 
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where ( )ygxi

1−=  are n  real roots for a given y . If for some value of y  there is no real 
root, then 
 
 ( ) 0=yfY . 
 
Justification: By definition, 
 
 ( ) { }dyyYyPdyyfY +≤<=  
 
Suppose for a given y  there are n  roots, i.e. 
 
 ( )ixgy = , ix  ~ root, ni ,...,2,1=  
 
Thus 
 
 ( ) { }nnnY dxxXxdxxXxPdyyf +≤<∪∪+<<= ...111 . 
 
or 
 

 ( ) ( )∑
=

=
n

i
iiXY dxxfdyyf

1
. 

 
Therefore, 
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