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Characteristic Function
Definition: The characteristic function of a random variable X is defined as
D, (0)=Ef'™ }= J'_:;e“"X f, (x)dx.
That is, ®(@) is the Fourier transform of f(x). For discrete random variable’s with

f(x)= ZPjé(x—xj), then

®(x)= P .
J
Definition: Second characteristic function of a random variable X is defined as
v(@)=o(w),
or
D(w) = e,
Properties of the Characteristic Function

i. 0)=["f(x)dx=1, p(0)=0
ii. |q)(a)l <1
iii. ®(w) is a positive definite function, i.e. anznlcb(a)m ~w, )a,a; >0 for any set of

m=1 k=1
complex coefficients a_ . Here a, is the complex conjugate of a, .

Inversion Formula

F(x) = [“ (0l “do.

:E_m

If f(x) is an even function. i.e., f(x)= f(-x), then ®(w) is real and even:

—0

®(w)= rw f(x)cos xdw = %J.: ®(w)cos wxdw .
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Moment Theorem

Various order moments may be generated from the characteristic function. These
are

or

the coefficients are related to various moments of random variable.

Moment Generating Function

Definition: The moment generating function of a random variable X is defined as

@ (s)=Efe™|= +:esxfx(x)dx.

For discrete random variable’s with (x)=3"P, z(x - x, ), then
j

®(s)= Z Pe™ .

The moment generating function and the characteristic function of a random variable are
related, i.e.

Moment Theorem

It then follows that
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If f(x) is zero for x <0, then ®"(s) becomes related to the Laplace transform of

the density function. i.e.,

®(s)= J.: f(x)e™dx = L{f(x)}|,__..
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