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Conditional Distributions and Densities 
 
 
Definition: The conditional distribution of ( )ξX  given (event) m  is defined as 
 

 ( ) ( ){ } ( ){ }
{ }mP

mxXPm|xXPm|xFX
∩≤

=≤= ξ . 

 
Note that ( )( )( )mxX ∩≤ξ  is the event consisting of all outcomes ξ  such that 
 
 ( ) xX ≤ξ  and m∈ξ . 
 
The properties of the conditional distribution ( )mxFx |  are similar to ( )xFX . For 
example, 
 
 ( ) 1| =∞ mFX , ( ) 0| =∞− mFX , { } ( ) ( )mxFmxFmxxxP XX ||| 1221 −=≤< . 
 
 
Definition: The conditional density of ( )ξX  given m  is defined as 
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( )mxf X |  is non-negative and 

 

 ( ) 1| =∫
+∞

∞−
dxmxf . 
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Expected Value and Moments 
 

The expected value of a random variable ( )ξX  is defined as 
 

 { } ( ) >=<= ∫
+∞

∞−
XdxxxfXE X . 

 
For a discrete random variable with ( ) ( )∑ −=

n
nnX xxPxf δ  
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Lebesgue Integral in sample space (Ensemble Average) 

 
The mean of ( )ξX  may be written in terms of a Lebesgue integral in the sample 
space. i.e., 
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Expected Value of g(X) 
 
Definition:  The expected values of a function of a random variable is defined as 

 

 ( ){ } ( ) ( )∫
+∞

∞−
= dxxfxgXgE X . 

 
When X  is a discrete random variable, 
 
 ( ){ } ( )∑=

i
ii xgPxgE . 

 
Expected value is a linear operator. i.e., 
 

 ( ) ( ){ }∑∑
==

=
⎭
⎬
⎫

⎩
⎨
⎧ n

j
j

n

j
j xgEXgE

11

. 

 
Variance (σ2) 
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Definition: The variance of a random variable is defined as 
 
 { } 222 ησ −= xE . 
 

Here,σ , is referred to as the standard deviation. 
 
Moments 
 
Definition: kth moment of a random variable, km , is defined as 

 

 { } ( )∫
+∞
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== dxxfxxEm X

kk
k , 10 =m , η=1m . 

 
 
 
Definition: kth central moment of a random variable, kµ , is defined as 
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k ηηµ . 
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233 23 ηηµ +−= mm . 

 
Note that 
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Moments of a Normal Random Variable 

 
For a zero mean normal random variable with probability density function 
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the moments are given as  
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Tchevycheff Inequality 
 

For a random variable X with mean η  and standard deviation σ , 
 

 { } 2

1
k

kXP ≤≥− ση  

where k is a positive constant. 
 
Proof: 
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Therefore,     

{ } 2

1
k

kXP ≤≥− ση . 

 
 
Approximate Evaluation of the Mean and Variance of g(X) 
 

If ( )xg  is a smoothly varying function then 
 

 ( ){ } ( ) ( ) ( ) ( )
2

2σηη ggdxxfxgXgE ′′+≈= ∫
∞+

∞−
, 

and 
 

 ( ) ( ) 222 σησ gxg ′≈ . 
 

Here 
 
 { }XE=η , 
    

      
 ( ){ }22 ησ −= XE . 

 
The proof following by using a series expansion of the density function near it mean. 


