

Extremal Distributions

Let X be the largest of n independent random variables, $Y_1, Y_2, ..., Y_n$. Then

$$F_X(x) = P\{Y_i \le x\} = P\{Y_1 \le x\} P\{Y_2 \le x\} ... P\{Y_n \le x\} = F_{Y_1}(x) F_{Y_2}(x) ... F_{Y_n}(x).$$
 (1)

If Y_i are identically distributed, it follows that

$$F_{X}(x) = (F_{Y}(x))^{n}, \tag{2}$$

and the corresponding probability density function is given as

$$f_X(x) = n(F_Y(x))^{n-1} f_Y(x). (3)$$

Gumbel proposed several asymptotic distributions for the extreme values of a random variable. These are described in this section.

i) Type 1: Extremal (Largest) Distribution (Gumbel Distribution)

The distribution of X, the largest of many independent random variables Y (with an exponential upper tail distribution, $F_Y(y) = 1 - \exp\{-h(y)\}$) is given as

Probability Density

$$f_X(x) = \alpha \exp\left\{-\alpha(x-u) - e^{-\alpha(x-u)}\right\} - \infty < x < +\infty.$$
(4)

Probability Distribution

$$F_X(x) = \exp\left\{-e^{-\alpha(x-u)}\right\}. \tag{5}$$

Parameters u and α are related to mean and variance of X. These are

ii) Type 1: Extremal (Smallest) Distribution (Gumbel Dist.)

The density and distribution functions of z, the smallest of many independent variables (with an exponential type lower tail distribution) are given as

Probability Density

$$f_{z}(z) = \alpha \exp\{\alpha(z-u) - e^{\alpha(z-u)}\} \qquad -\infty < z < +\infty.$$
(8)

Probability Distribution

$$F_{z}(z) = 1 - \exp\{-e^{\alpha(y-u)}\},$$

Here

$$\mu_Z = u - \frac{0.5772}{\alpha},$$
 (10)

$$\sigma_z^2 = \frac{\pi^2}{6\alpha^2}.$$
 (11)

iii) Type 2: Extremal (Largest) Distribution (Weibull)

The density and distribution function of X, the largest of many Y_i are given as

Probability Density

$$f_X(x) = \frac{k}{u} \left(\frac{u}{x}\right)^{k+1} e^{-\left(\frac{u}{x}\right)^k},$$

$$x \ge 0$$
 (12)

f_X(x) 2 4 6 x

(13)

G. Ahmadi

Probability Distribution

$$F_X(x) = e^{-\left(\frac{u}{x}\right)^k}, \qquad x \ge 0.$$

with

$$\mu_X = u\Gamma\left(1 - \frac{1}{k}\right), \qquad k > 1, \tag{14}$$

$$\sigma_X^2 = u^2 \left[\Gamma \left(1 - \frac{2}{k} \right) - \Gamma^2 \left(1 - \frac{1}{k} \right) \right], \qquad k > 2.$$
 (15)

iv) Type 3: Extremal (Smallest) Distribution

Probability Density

$$f_{Z}(z) = \frac{k}{u - \ell} \left(\frac{z - \ell}{u - \ell} \right)^{k-1} \exp \left\{ -\left(\frac{z - \ell}{u - \ell} \right)^{k} \right\}, \qquad z \ge \ell.$$
 (16)

Probability Distribution

$$F_{Z}(z) = 1 - \exp\left\{-\left(\frac{z - \ell}{u - \ell}\right)^{k}\right\}, \qquad z > \ell, \qquad (17)$$

with

$$\mu_Z = \ell + (u - \ell)\Gamma\left(1 + \frac{1}{k}\right),\tag{18}$$

$$\sigma_Z^2 = \left(u - \ell\right)^2 \left[\Gamma\left(1 + \frac{2}{k}\right) - \Gamma^2\left(1 + \frac{1}{k}\right)\right]. \tag{19}$$

Simulation of a Random Variable with a Known Distribution

We would like to simulate a random variable Y with a known distribution function $F_Y(y)$. Suppose U is a standard uniform random variable with probability density function

$$f_{U}(u) = \begin{cases} 1 & 0 \le u \le 1 \\ 0 & otherwise \end{cases}.$$

It may be shown that

$$Y=F_Y^{-1}(U),$$

has the desired distribution function, $F_{Y}(y)$.

Examples

i) Exponential

$$f_Y(y) = \lambda e^{-\lambda y} u(y), \qquad F_Y(y) = (1 - e^{-\lambda y}) u(y),$$

$$Y = -\frac{\ln(1 - U)}{\lambda} \text{ or } Y = -\frac{\ln U}{\lambda}.$$

(Note 1-U is also uniform)

ii) Weibull

$$f_{Y}(y) = \alpha \beta y^{\beta - 1} e^{-\alpha y^{\beta}} u(y), \qquad F_{Y}(y) = \left(1 - e^{-\alpha y^{\beta}}\right) u(y),$$

$$Y = \left(-\frac{1}{\alpha} \ln U\right)^{\frac{1}{\beta}}.$$

iii) Gumbel

I.
$$F_Y(y) = \exp\left\{-e^{-\alpha(y-u)}\right\},$$

$$Y = u - \frac{\ln\left[-\ln U\right]}{\alpha}.$$
II. $F_Y(y) = \exp\left[-\left(\frac{u}{y}\right)^k\right]u(y),$
$$Y = \frac{u}{\left(-\ln U\right)^{\frac{1}{k}}}.$$
III. $F_Y(y) = 1 - \exp\left(-\left(\frac{y}{u}\right)^k\right)u(y),$
$$Y = u\left[-\ln(1-U)\right]^{\frac{1}{k}}.$$

iv) Gaussian

For Gaussian random variable the procedure is different. It may be shown that the pair of random variables defined as,

$$Y_{1} = \sqrt{-2\ln U_{1}} \cos 2\pi U_{2},$$

$$Y_{2} = \sqrt{-2\ln U_{1}} \sin 2\pi U_{2},$$

are zero mean, unit variance independent Gaussian random variables.

Proof:

For uniform random variables,

$$f_{U}(u) = \begin{cases} 1 & 0 < u < 1 \\ 0 & otherwise \end{cases}, \qquad F_{U}(u) = \begin{cases} 1 & u > 1 \\ u & 0 \le u \le 1 \\ 0 & u < 0 \end{cases}.$$

Consider the transformation

$$Y = F_Y^{-1}(U).$$

Then,

$$F_{Y}(y) = P(Y \le y) = P(F_{Y}^{-1}(U) \le y) = P\{U \le F_{Y}(y)\} = F_{U}(F_{Y}(y)), \quad 0 < y < 1.$$

Note that for 0 < y < 1, $F_U(u) = u$. Thus,

$$F_{Y}(y) = F_{U}(F_{Y}(y)) = u(y) = F_{Y}(y).$$

Alternative using the transformation theorem,

$$Y = F_Y^{-1}(U), \quad f_Y(y) = \sum_i \frac{f_U(u_i(y))}{|g'(u_i(y))|}.$$

Now

$$u=F_{Y}(y),$$

and

$$du = f_Y(y)dy$$
, $g' = \frac{dy}{du} = \frac{1}{f_Y(y)}$.

Thus

$$f_{Y}(y) = \frac{f_{u}(F_{Y}(y))}{\frac{1}{f_{Y}(y)}} = f_{u}(F_{Y}(y)) \cdot f_{Y}(y) = f_{Y}(y).$$