Second Order Modeling of Turbulence

Roughly speaking, if turbulent is characterized by a single length and a single
velocity scale, first order modeling (the mixing length and related models) is expected to
give reasonable results. The mechanism of transport is superficially like that of
turbulence, but the total amount of transport is reasonable estimated. (Thisis because the
constants in the model are calibrated against the data.)

First order modeling breaks down completely in many situations, when there are
more than one length or velocity scales. In these situations, the mixing length type
models cannot predict the fluxes even approximately. A typical example is the buoyancy
driven surface mixing layer where heat flux can occur in the opposite direction of the
temperature gradient.

Second order models are expected to work in the situations in which the first
order models are not applicable. This expectation is due to the fact that many terms,
which are responsible for various mechanisms are carried through. However, past
experience shows that when the first order models work, the second order models do not
give much better results.

Two-Equation Turbulence Models

Typical examples where the multi-equation turbulence models are needed are
shown in the figures.
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In accordance with the Prandtl -K olmogorov equation,

n, =k?/ (1)

where k isthe kinetic energy of turbulence and ¢ is the turbulence length scale. While
the transport equation for k iswell known, a transport equation for ¢ is needed. Usually,
atransport equation for acombination of k and /¢ isformulated. Let

z=k"/". (2)

Different authors have used different choices for z that are listed in the table in the past.

Table 1. Commonly used choicesfor z.

Author Symbol

Kolmogorov
(1942)
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Chou (1945),
Jones and
Launder
(1972),
Launder and
Spalding (1972)
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Rotta (1951) ! 1 0 1

Rotta (1968), k¢ k¢ 1 1

Ng-Spalding
(1972)

Spalding (1969) k w 1 -2
g 2

For athin shear layer, the k-equation is given as
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with n; givenisby (1). The genera transport equation for z isgiven as
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where s,, C,,and C, areconstants (s, »1).

From the data for decay of turbulence behind a grid, we know that k decays as
x*. Equations (3) and (4) become
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X n;
dz kz
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e (6)

Compatibility of Equations (5) and (6) implies that
n
Cz :CD(m' E) (7)

The constant C, may be estimated from matching with limiting flow in the
inertial sublayer near awall. That is, intheinertial layer,

1 1
2,,*2 2

?=ky, k=Cgu", n;=Cgku’y, (8)
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z=k"™" =Cy2u " (ky)" = Ay", (9)
where A isaconstant.

Equations (3) and (4) may now be restated as

k
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éC—— -C,—=0. (11)
s, g 5 k(ﬂy) .

Eliminating E we find
iy



1 &, 'ﬂzQ+zk _
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Using (8) and (9) in (12) and rearranging, we find

2,2
C1 :&_ k™n (13)
CD SZCD
For the e-equation, (m = g n =-1) equation (7) and (13) gives
k2
cC,=2C,, C,=2- : 14
2 D 1 s.C. (14)
Several z-equations are given in the following section.
Final z-equations, Launder and Spalding (1972)
The following zequations were suggested by Launder and Sparlding (1972):
k¢ - Equation
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where, s, =09, s, =0.9,and ¢, =0.09.



e-Equation
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wheres, =1, s_,=1.3,and c, =0.09.

Boundary Conditions

The appropriate boundary conditions are discussed in this section.

At Plane or Axis of Symmetry

At Free Surface

The limiting forms of equations (3) and (4) imply that
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The K- € Model

As noted before, e is a specia form of the zfunction and the equation for e can
be obtained accordingly. Nevertheless, it isinstructive to provide a direct derivation for
the e-equation three-dimensional flows.

The exact k-equation is given as

e -
dk _ i @umm P¢0U uﬂi.1¢“||11L e+nN2k. (24)
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The exact equation for the meansquare flow fluctuation vorticity is givenas

dadieed 1Y (e whug- nle T (25)
dt e2 2 2‘HX x; 1x,

3 s
g and higher are retained and the smaller order are
2

where terms of the order of EeLu

neglected.
We assume that
utug ?U —‘.- —kdij, (26)
X Xi g 3
where
2
n =c X (27)
e
Furthermore, let
- ulﬂ%a;ugj}]:+i¢g: n_Tﬂ_k (28)
2 rg¢ s, 1%
The k-equation becomes
U o
dk_iaelﬁo A, ‘H oM, (29)
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where the viscous diffusion is neglected.



Recalling that

e = e,

(30)

eguation (25) (when multiplied by 2n) is an exact transport equation for e. Introducing

the following closure assumptions:

- nugwne= Y& (aitfusion),
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e, AU, 'ﬂU ofu,
e T 5,

%, X, “ K’

2nw¢/v¢d¢ Cy

, (production),

(dissipation),

the e-equation becomes

de T @& e "+ edU, ﬂU oTu, e?
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The constants are given as
c,, =0.09

C, =145

Note that the Reynolds and continuity equation are given as

e
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% =0 (36)

Equations (29) and (34) - (36) together with n, given by (27) form a system of
six equations for determining the six unknowns U, , P, k, and e.

Boundary Conditions Near a Wall

Schematics of agrid point near awall.
The velocity boundary condition is given as

U e
2 CYKL? =< InéEy,
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0
a, (37)
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where E =9.0 for a smooth wall. Here k, is supposed to be known by solving the k

equation. Integrating the k-equation across the grid point, the following assumption is
needed:
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L ow Reynolds Number M odels

(Jones and Launder (1973), Int. J. Heat Mass Transfer 16, 1119.)
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Modified k - e Model for Low Reynolds Number Flows
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where A, A(,and ACare constantsand W isthe characteristic vorticity.

Saffman M odel

Ak
oW
1 & Tk O
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where a(, b(, a«, A, A(, AC and h are constants.

¢ 2
bq;_% A=C? at=C, At= A":%A act= w h=1, k »0.4 isthe

*2

Karman constant, G= UT » 0.3, and W isthe pseudo-vorticity.

Boundary Conditions near a Solid Wall
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Stress Transport Model for a Two-Dimensional Boundary Layer Flow

The exact equation for u¢in aboundary layer flow is given as

Dige=-velW T w-ﬂ“’oJ,WJ,‘IMO ‘HU¢'HV¢
Dt Ty '”yg rz rétly g ‘Hx X,

11



where v_fl?E isthe production, all u& e - ﬂ isthe diffusion,
Ty Ty é r 5
E¢6&1—”+— isthe pressure-strain, and Znﬂ—uﬂ— isthe dissipation.
Ty Xg ™ TX

Modeling (Hanjalic 1970)

Production is approximately equal to k % .

Diffusion is approximately equal to —e— uﬁ}/ﬂtlJ
fyes: Ty u

Dissipation is approximately equal to O.

1

2
Pressure-strain is approximately equal to k7 udc,

The Closed transport equation becomes

D 'ﬂen ﬂU k2
u/t=—sp—— 07 k—+— ¢/¢_
Dt ﬂySs_ﬂ Q’ § v ¢ -
4]

3
2
where s, =0.9, ¢, =2.8,and k and ¢ (e=CDk7) are found from their

transport equations.

I—Erlownd Daly [(1970) Phys. Fluids 13, 2634] obtained five equations for ud¢, u_¢2
v we¢ and e.
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L ow-Reynolds-Number
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Jones-Launder Model
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c,=144, C,=192, C_=009, s,=10,
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Algebraic Stress Transport Model (Rodi, ZAMM 56 (1976))

A simplified stress transport model is given as

L ” U
Eu.%%csia%u@u;tiu,mgtg- upugﬂ L. ugugﬂu - Cl_ea?g Tor= dij3k9
dt X ge i, @ X X, ké 3 9 (1)
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ge; ij ij 3 7 3 ij
where D; = uf}u@ u¢u¢— isthe diffusion, P, =- umﬁt&- aug—
1 g u ] ﬂxk ﬂxk

isthe production, - ¢,— guﬂijﬂ? d; gko 98%” dingg is the pressure-strain,
g e 2

and %dije is the dissipation.

Here, P :%P“ is the production rate of turbulent kinetic energy. Contracting equation
(2), we find the transport equation for k :

dk _ U,
— —ugu u¢ - e, 2
dt ﬂ g Q: MZ! ﬂ: ' ﬂX/
where D :ig— @uﬂi— |sthed|ffu510n and P= u@uglﬁ X isthe
Tlxk X, g ﬂX(
production.
Radi (1976) assumed that
d - ubifask o utug
—u ¢c-pD. =& . D=L (p- ] 3
a M P T e P PO )

Using (3) in (1) and rearranging, theresult is
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Thisisan algebraic expression for ufu¢.

(4)

For simple shear flows, it may be shown that equation (4) reduces to the

Kolmogorov-Prandtl hypothesis with
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