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PHENOMENOLOGICAL MODELS FOR TURBULENCE 
 
 

Reynolds Equation 
 
Since turbulence is a continuum phenomenon, the instantaneous velocity and 

pressure fields satisfy the Navier-Stokes equation. i.e., 
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During a turbulent motion u  and p are random functions of space and time.  

Hence, these may be decomposed into mean and fluctuating parts, i.e. 
 
 uUu ′+= , ii uU = , 0u i =′ ,              (3) 
 
 pPp ′+= , pP = , 0p =′ ,              (4) 
 
where U  and P  are the mean quantities and 'u  and p' are the fluctuating parts.  Here, a 
bar on the top of the letter stands for the (time) averaged quantity.  That is  
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The probabilistic (ensemble) average is defined as 
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where )(f u  is the probability density function of u .  Ergodicity assumption implies that 
the time average and ensemble average are equal.  Hence, 
 
 iii Uuu >==<                (7) 
 
Note that the ergodicity hypothesis has not been proven for turbulence; however, it is 
commonly used to relate the theoretical results to the experimental data. 
 
 It is also well known that while 0u i =′ , 0'p = , 
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 0uu ji ≠′′ , 0u'p i ≠′ , 0uuu kji ≠′′′ .             (8) 
 
 About a century ago, Reynolds suggested to use the decomposition given by (2) 
and (3) into the Navier-Stokes equation and average the resulting equation.  Noting that 
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it follows that 
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Equation (10) is referred to as the Reynolds equation. The term ji uu ′′ρ  is the stress 
induced by the turbulent fluctuation.  i.e., 
 
 T

jiji
T
ij uu τ=′′ρ−=τ                         (12) 

 
Equation (10) may be restated as 
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µ+δ−=τ  is the mean viscous stress tensor and ji uu ′′ρ  is the 

turbulent stress tensor. 
 
 The Reynolds stress (turbulent stress) is a symmetric tensor and its components 
are given by 
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Note that the turbulent stresses introduce six additional unknowns into the 

averaged Navier-Stokes equation. 
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Phenomenological Theories of Turbulence 
 
 The classical phenomenological theories of turbulence are referred to as the first-
order closures (closure at the order of the first moment) or zero-equation models (no 
additional differential equation are introduced to solve). 
 
 
Boussineq Eddy Viscosity Model 
 
 Boussineq suggested 
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where 
 
 TT ρν=µ  
 
is the eddy viscosity. For plane shear flow, 
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It is now well recognized that Tν  is not a constant and is strong function of state of 
turbulent motion. 
 
 
 
Prandtl Mixing Length Hypothesis 
 
 Prandtl argued that  
 
 vuT ′′ρ−=τ               (17) 
 
and for a thin shear layer 
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where l  is the mixing length.  Hence, 
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G.I. Taylor recovered the mixing length hypothesis based on a vorticity transport 
formulation and von Karman used a similarity analysis for estimating the mixing length 
as 
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 The mixing length theory has dominated the field of turbulence modeling for 
more than half a century.  It is now known that the mixing length hypothesis works for 
turbulent flows, which are characterized by single length and velocity scales.  The reason 
for its effectiveness is simply due to dimensional requirements! 
 
 
Logarithmic Velocity Near a Wall 
 
 Near a wall, there is a region (inertial sublayer) where turbulence is characterized 
by a single length scale (distance from the wall y ) and a single velocity scale (shear 

velocity = 
ρ
τ

= 0*u ).  In this region, 

 
 yκ=l ,  4.0=κ  = von Karman constant         (22) 

 
and the shear stress is about 0τ . Equation (19), then implies 
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Integrating Equation (24), it follows that 
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where 5B ≈ . 
 
 Very near wall, in the viscous sublayer, turbulence fluctuation becomes small and 
the viscous stress becomes dominant.  As a result, 
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Hence, 
 
 ++ = yU  ( 5y0 ≤< + ).                       (29) 
 
 A schematics of the velocity profile is shown in the figure.  Reichardt suggested a 
smooth curve for the buffer region (Schlichting, McGraw-Hill, 1960). Outside the 

viscous  sublayer approximate expressions given by 7
1

)y(74.8u ++ = and 10
1

)y(5.11u ++ =  
may be used. 
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Schematics of turbulent velocity profile near a wall. 


