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Stability Analysis for Finite Amplitude Disturbances

Let v, p be a basic motion of a viscous fluid in a bound region V. Let S denote

the surface boundary of V. The basic flow satisfies the Navier-Stokes equation and the
continuity equation. In dimensionless form these are given as

a—V+V-VV=—Vp+LV2V, V-v=0, inV (1)
ot Re
v=V on S. (2)

Consider a disturbed motion v*, p". The disturbed motion must satisfy the same
equations and boundary condition. These are

* * * 1 * * .
—+V -VV =-Vp +R—v2v, V.vi=0, inV, (3)

v:'=V onS. (4)

The difference motion is defined as

*

u=v'-v, w=p -p. (5)

Subtracting (1) from (3) and using (5), we find

a—u+u-Vv+v-Vu+u-Vu:—V7c+LV2u, inV, (6)
ot Re
u=0onS. (7)

Equation (6) is the governing equation for the finite amplitude disturbance.

The stability may be analyzed by studying the dynamics of the kinetic energy of
the difference motion, T . That is,

_Lre
T—EIu v, (®)

where the integral is over the volume V unless stated otherwise.

Using (6), we find

d—T:ju-a—udV:J‘[Lu-vzu—u-Vn—u-Vv-u—v-Vu-u—u-Vu-u}dV 9)
dt ot Re
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With the help of vector identities and divergence theorem, the right hand side of (9) is
simplified. Using

VxVxu=V(V-u)-Vu, (10)
and

u-vx(Vxu)=-V-(ux(Vxu))+(Vxu) (11)
The first term on the right hand side of (9) may be restated as

Ju-v?udv = [ux(vxu)-ds-[(Vxu)dv. (12)

The second term on the right hand side of (9) becomes

ju VrdV = [[V-(zu) =7V -uldv = jnu .dS=0. (13)

The last two terms in (9) also vanish identically. That is,

jv-Vu-udV=jv-v%dv=j{v-(v%j—%v-v}d\/=!v%-ds=o,

(14)
u’ u’
J'u-Vu.u:J'u-V—dvzj—u'dS=0. (15)
2 ) 2
Using (12) — (15), equation (9) may be restated as
a__1 (Vxu)dv - Iu Vv-udV. (16)
dt Re
Employing the Korn inequality,
[(vxuldv = NJu’dv, (17)

where N is a number depending on the geometry (for spheres N =80 ) equation (16)
becomes

d—Tsz(—ﬁij. (18)
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Here, A is the maximum eigenvalue of (—VV) or (—d) in time period O to t. In deriving
(18), we used the following inequality:

—u-d-u<iu’. (19)

From (18), it follows that if it follows that if Re < % then the kinetic energy of the

difference motion decays to zero and the basic motion is stable. That is, from (18), we
find

T< T(o)exp{— (R% = kjt} : (20)

Ast— oo, then T—0 and u=0 and V" = v almost everywhere. Based on these
results, the following theorem regarding the stability of basic motion may be stated.

Theorem

If for a basic flow of a viscous incompressible fluid in a bounded region of space

V, Re< % , then the basic flow is stable.

Corollary 1 (Uniqueness of Unsteady Viscous Flows)

If v and v" are two unsteady flows of a viscous fluid in a bounded region of
space V having the same velocity distribution at time t =0 and on boundary of V , then

they must be identical if Re < % .

Corollary 2 (Uniqueness of Steady Viscous Flows)

If v and v" are two steady flows of a viscous incompressible fluid in a bounded
region V(t) subject to the same boundary conditions, then the two motions must be

identical if Re < % .



