
 

Stability of Viscous Flows 
 
 Consider the Navier-Stokes equation in dimensionless form 
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where  and  are nondimensional velocity and pressure and  is the Reynolds 
number. The continuity equation is given by 
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Let ,  be a steady basic flow, the stability of which is to be analyzed.  That is, ( )xV P
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Now let the disturbed motion be given as 
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Using (5) and (6) in (1),  and subtracting (3) we find 
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In the derivation of equation (7), we neglected vv ′∇⋅′  which is of higher order 
infinitesimal. 
 
 
Stability of Two-Dimensional Parallel Flows 
 

Consider the special case where 
 
 , .              (9) ( )iV yU= ( )y,xPP =
 
Equations (7) and (8) for two-dimensional flows may be restated as 
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Introducing the stream function ψ  for the disturb motion with 
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and eliminating p  between (10) and (11), the results may be restated as ′
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Equation (14) governs the dynamic of the disturbed motion. 
 

Now assume a propagating wave solution given as 
 
 ( ) ( )ctxiey −αϕ=ψ ,             (15) 
 
where  is the wave number and  is the complex speed of the wave. i.e., α c
 
               (16) ir iccc +=
 
and  is the important parameter for stability analysis. That is, the disturbance is damped 
if  is negative. For , the disturbance will grow and leads to instability. Using (15) 
in (14), we find the Orr-Sommerfeld equation. i.e., 
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Equation (17) is the basis for linear stability analysis of parallel viscous flows. 
 

 
The boundary conditions for a boundary layer type flow are: 

 
 At 0y = ,  or 0vu =′=′ ( ) ( ) 000 =ϕ′=ϕ        
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 At ∞=y ,  or 0vu =′=′ ( ) ( ) 0=∞ϕ′=∞ϕ           (18) 
 
Equation (17) together with boundary conditions given in (18) form a complex 
eigenvalue problem.  For given α  and 0ci =  (neutral stability), the eigenvalues  and 

 may be found.  A typical curve for the case of boundary layer over a plate is shown 
in the figure. 
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 In this figure, the critical 
Reynolds number is given by 
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with  being the displacement 
thickness.  For  some 
modes become unstable.  At the 
critical Reynolds number,  
The critical wavelength becomes  

*δ
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Figure 1. Stability boundary for boundary 

layer flows. .618 *
crit δ≈δ≈λ   

  
Here δ  is the boundary layer thickness. 

 
Experimental data shows that the critical value of Reynolds number as defined in 

Equation (19) is about 950 to 1700 (corresponding to 65
x 10~102.3xURe ×≈

ν
= ∞ ) 

depending on the free stream turbulence.  The reasons for this discrepancy are as follows: 
 

i. Unstable waves need a distance to travel before amplifying to a detectable level. 
ii. Nonlinear effects may alter the nature of stability criterion. 

 
Squire Theorem: Two-dimensional disturbances are more critical in comparison to the 
three dimensional disturbances for two-dimensional flows. 
 
 Squire Theorem implies that for linear stability analysis of two-dimensional 
flows, we need to be only concerned with planar disturbances.  When the flow is stable 
under two-dimensional disturbances, it will stay stable under three-dimensional 
disturbance as well,   
 
Frictionless Stability Analysis 
 
 For the frictionless case, equation (17) becomes 
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 ( )( ) 0UcU 2 =ϕ′′−ϕα−ϕ ′′− .            (19) 
 
The associated boundary conditions are 
 
 .             (20) ( ) ( ) 00 =∞ϕ=ϕ

 
 
Stability Theorem (Rayleigh, Tollmien) 
 
 The boundary layer velocity profiles that possess a point of inflexion are unstable. 
 

Unstable 

 

Stable 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Schematics of boundary layer velocity profiles for stable and unstable flows. 
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