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Stability of Viscous Flows
Consider the Navier-Stokes equation in dimensionless form

a—V+V-Vv:—Vp+iV2v,
ot Re

where v and P are nondimensional velocity and pressure and Re is the Reynolds
number. The continuity equation is given by

V-v=0.
Let V(x), P be a steady basic flow, the stability of which is to be analyzed. That is,

V-VV =—VP+iv2v,
Re

V-v=0
Now let the disturbed motion be given as

v=V+Vv', |V

<«<|V|
p=P+p’.
Using (5) and (6) in (1), and subtracting (3) we find

N VWV VY :—Vp’+iV2v',
ot Re

V-v'=0.

In the derivation of equation (7), we neglected v'-VVv' which is of higher order
infinitesimal.

Stability of Two-Dimensional Parallel Flows

Consider the special case where
V=U(y)i, P=P(xy).

Equations (7) and (8) for two-dimensional flows may be restated as
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o, Ua—u+v’a—U:—a—P+iV2u', (10)
ot OX oy oX Re

N N P L gy (11)
ot oX oy Re

ou" oV
—+ =

x oy

0. (12)

Introducing the stream function  for the disturb motion with

':a_\v V,:_ﬁ_\ll

u ' v (13)
and eliminating p’ between (10) and (11), the results may be restated as

§V2w+ U%VZW_Z—\)I:U"=%V4W- (14)
Equation (14) governs the dynamic of the disturbed motion.

Now assume a propagating wave solution given as

v =oly)e ), (15
where o is the wave number and c is the complex speed of the wave. i.e.,

C=Cc, +ic; (16)

and c, is the important parameter for stability analysis. That is, the disturbance is damped
if ¢, is negative. For ¢, >0, the disturbance will grow and leads to instability. Using (15)
in (14), we find the Orr-Sommerfeld equation. i.e.,

(U- C)((p" - 0c2(p>— U’ = —ﬁ((p"” —20.°" + oc4(p) (17)

Equation (17) is the basis for linear stability analysis of parallel viscous flows.

The boundary conditions for a boundary layer type flow are:

Aty=0,u =v'=0or ¢(0)=¢'(0)=0
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Aty=o, U’ =V =0 or ¢()=¢'(cc)=0 (18)

Equation (17) together with boundary conditions given in (18) form a complex
eigenvalue problem. For given o and ¢, =0 (neutral stability), the eigenvalues c, and

Re may be found. A typical curve for the case of boundary layer over a plate is shown
in the figure.

In this figure, the critical

Reynolds number is given by Stable

- C.=0
Re. =901 590 (19)
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crit
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with &~ being the displacement

thickness. For Re>Re_;, some
modes become unstable. At the

critical Reynolds number, a8 ~ 0.35. Re
The critical wavelength becomes

v

crit Re

~185" ~ 65, Figure 1. Stability boundary for boundary

M layer flows.

Here & is the boundary layer thickness.

Experimental data shows that the critical value of Reynolds number as defined in

Equation (19) is about 950 to 1700 (corresponding to Re, = u.x ~3.2x10° ~10°)

A%
depending on the free stream turbulence. The reasons for this discrepancy are as follows:

i.  Unstable waves need a distance to travel before amplifying to a detectable level.
ii.  Nonlinear effects may alter the nature of stability criterion.

Squire Theorem: Two-dimensional disturbances are more critical in comparison to the
three dimensional disturbances for two-dimensional flows.

Squire Theorem implies that for linear stability analysis of two-dimensional
flows, we need to be only concerned with planar disturbances. When the flow is stable
under two-dimensional disturbances, it will stay stable under three-dimensional
disturbance as well,

Frictionless Stability Analysis

For the frictionless case, equation (17) becomes
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(U- C)((p" - ach)— U'e=0. (19)
The associated boundary conditions are

¢(0)= () =0. (20)

Stability Theorem (Rayleigh, Tollmien)

The boundary layer velocity profiles that possess a point of inflexion are unstable.
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Figure 2. Schematics of boundary layer velocity profiles for stable and unstable flows.
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