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Wiener -Her mite Expansions

Expansion of afunction on an orthogonal set is one of the most common
techniques of applied mathematics. Let u(x) be an arbitrary function and the set {j , (x)}
be an orthogonal set. That is,
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Expansion of arandom function on arandom base is developed by Wiener and
Cameron and Martin. Let a(x) be awhite noise process with
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A dtatistically orthogonal set may be constructed as

and so on with
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The set given by (5)-(8) isreferred to asthe Wiener- Hermite set. Theissetis
complete and
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An arbitrary random function u(x) may be expanded in terms of the Wiener-
Hermite set. i.e.,
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Here, the mean of u(x) is taken to be zero,
<u(x)>=0. (13)

The first term of the seriesin Equation (12) is the Gaussian part of u(x), the second and
higher order terms are the non-Gaussian partsof u(x).

Winer-Hermite Model for the Burger Equation

To illustrate the application of this method to turbulence, we consider the Burger
model equation given as
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Substituting the expansion given by (12) in Equation (14), we find
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Multiplying (15) by H®(x§ and H® (x¢x @), respectively, and taking the expected value
we find
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where (K @ )3 terms were neglected. Rearranging (16) and (17) wefind
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These are two equations for finding two deterministic kernel functions K® and K



