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L arge-Eddy Simulation and Subgrid-Scale M odeling

Large-eddy simulation has attracted considerable attention in the recent years.
The foundation of this approach is based on the observation that the small-scale
turbulence structures are nearly isotropic and quite universal in character while the large-
scale structures of turbulent flows vary considerably. In this approach, the small-scale
turbulence is modeled through the subgrid-scale stresses while the large eddies are
directly calculated.

The averaging process on the grid-scale is outlined in the subsequent section. The
basic conservation laws are
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where v, is the velocity vector, t; isthe stresstensor and f; is the body force per unit
mass. For a Newtonian fluid

t, =-pd; + n{vi,j + Vj,i)' (incompressible) 3

In large-eddy simulation the flow parameters are decomposed as:

V=V +VE p=p+pt ot =+, (4)
where bar on the top of a letter stands for the large-scale part and a prime denotes the

residual (subgrid-scale) part. Following Leonard, the large-scale component of a quantity
f isdefined as

f(x) = B (x, x9f (xdax ¢, (5)

D

where G isafiltering function and D isthe flow domain. A Gaussian filter is frequently
used. Note that unlike the traditional Reynolds averaging

1f and  f010. (6)
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Applying the filtering procedure to equations (1) and (2), it follows that

Tv, _
[ (7)
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where the subgrid-scale stress tensor is defined as

th=-r (vivi - V_Jv_,) (9)
or

t =tf +t; +t§ (10)
with

th =-rvevge, ti=-r (vjvi - V_,V_,) (11)

t‘j‘;:-r(ﬁ+m). (12)

Here t} isthe Reynolds stresses, t;; isthe Leonard stresses and Rﬁ isthe cross stresses.
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The Reynolds stress tensor is commonly modeled by using an eddy viscosity. i.e.,

B v, qv.0
(" =2n,D,, D, =101, V2 (13)
29X, ‘ij p
For eddy viscosity, the Smagorinsky model given by
Y !
Ny = (CSD)Z(Fkazﬁi (14)

1
is frequently used. Here [ is the size of the grid (D=(D,D,D,)3), and cg is the
Smagorinsky constant, which isabout ¢ » 0.21 (0.17 —0.24).
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The Leonard stresses need not be modeled and may be calculated as part of the
solution. The cross stresses was modeled as (Reynolds et al.)

t¢ :-rcr(UjUi- u=Ju=,) (15)

where ¢, =1.1 was originally suggested. Speziale found c, =1 make the equation
Galilean invariant asis required by the Navier-Stokes equation.

Turbulent Channel Flow

Sample results for direct numerical simulation for a turbulent channel flow is
presented in this section. Here it is assumed that the flow in the axial and the transverse
directions are periodic with period of 660 wall units. The distance between the wallsis
250 wall units. The no dip boundary conditions at the surface of the platesat y* = +125
are imposed. Figure 1 shows the instantaneous velocity vector field at a section across

the channel at t* =200 and x* =157.5. While the vector field is random, the presence
of structures near the walls could be clearly seen from thisfigure.
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Figure 1. Instantaneous velocity vector field across the channel.

Figure 2a shows another sample instantaneous velocity vector field in the yz-

planeat t* =100 and x* =236.25. While the vector flow varies randomly, it is seen
that its general features are similar to those observed in Figure 1. The structures near the
wall are still present but are partly shifted and modified. Figure 2b shows the
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instantaneous velocity field at a section very close to the lower plate a y* =3. This
figure shows that near the wall there are roughly periodic high speed and low speed
streaks with markedly different velocities.
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Figure 2. Instantaneous velocity vector field at two planesin the channel.

Figures 3a and 3b, respectively, show the contour plots of short-time mean fluid

velocities in the streamwise direction, u*, and normal to the wall, v*, in the yz plane
near the upper wall. The short-time mean fluid velocities are obtained by spatial
averaging over adistance of 630 wall unitsin the streamwise direction for atime duration
of 100 wall units. Figure 3a shows that the mean streamwise velocity has a roughly
periodic variation in the spanwise direction with the distances of nearby high speed (or
low speed) regions being about 100 wall units. Similar results for v*-velocity in Figure
3b shows aternating streams toward and away from the upper wall. Comparing Figures
3a and 3b, it is observed that the locations of high-speed axial streams roughly
correspond to the regions that the flow moves toward the wall, and the low-speed axial
streams, on the average, coincide with the regions that the flow moves away from the
wall.
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Figure 3. Variations of axial and vertical velocity field near the upper wall.

Figure 4a shows the DNS simulation for different grid resolution and the

experimental data of Niederschulte et al. for the mean velocity near the wall. Here, s* is
the nondimensional distance from the wall. The theoretical linear velocity profile in the
viscous sublayer and the logarithmic variations in the inertial sublayer are also shown in
this figure for comparison. DNS simulations were performed for grid sizes of
16" 64 64, 32" 64" 64 and 32" 128" 128. It is observed that the simulated mean
velocity isin good agreement with the data and the classical solutions.

The simulated root-mean-square (RMS) fluctuation velocities are shown in Figure
4b and are compared with the earlier high-resolution simulations of Kim et al. Figure 2b
shows that the general agreement is reasonable. Figure 2 also shows that the mean
velocity and turbulence intensities do not change appreciably when the grid resolution is
increased by afactor of 2 to 8.
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Figure 4. Comparison of the DNS of mean and RMS velocity fields with different
grid resolution with the experimental data and earlier simulation results.

Figure 5 shows sample contour plots of a channel flow at high Reynolds number
using large eddy simulation (LES). The elongated structure of flow along the flow
direction can be clearly seen from thisfigure.
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Figure 5. Large eddy ssimulation (LES) of aturbulent channel flow.
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