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Large-Eddy Simulation and Subgrid-Scale Modeling 
 
 
 Large-eddy simulation has attracted considerable attention in the recent years. 
The foundation of this approach is based on the observation that the small-scale 
turbulence structures are nearly isotropic and quite universal in character while the large-
scale structures of turbulent flows vary considerably. In this approach, the small-scale 
turbulence is modeled through the subgrid-scale stresses while the large eddies are 
directly calculated. 
 
 The averaging process on the grid-scale is outlined in the subsequent section. The 
basic conservation laws are 
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where iv  is the velocity vector, jit  is the stress tensor and if  is the body force per unit 
mass.  For a Newtonian fluid 
 
 ( )i,jj,iijij vvpt +µ+δ−= . (incompressible)            (3) 
 
 In large-eddy simulation the flow parameters are decomposed as: 
 
 iii vvv ′+= , ppp ′+= , ijijij ttt ′+= ,             (4) 
 
where bar on the top of a letter stands for the large-scale part and a prime denotes the 
residual (subgrid-scale) part. Following Leonard, the large-scale component of a quantity 
φ  is defined as 
 

 ( ) ( ) ( )∫ ′′φ′=φ
D

d,G xxxxx ,                (5) 

 
where G  is a filtering function and D  is the flow domain. A Gaussian filter is frequently 
used.  Note that unlike the traditional Reynolds averaging 
 

 φ≠φ     and        0≠φ′ .              (6) 
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Applying the filtering procedure to equations (1) and (2), it follows that 
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where the subgrid-scale stress tensor is defined as 
 
 ( )ijij
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ji vvvvt −ρ−=               (9) 
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with 
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R
ji vvt ′′ρ−= , ( )ijij

L
ji vvvvt −ρ−= ,               (11) 

 
 

 ( )jiij
C
ji vvvvt ′+ρ−= .             (12) 

 
Here R

jit  is the Reynolds stresses, L
jit  is the Leonard stresses and C

jiR  is the cross stresses. 
 
 The Reynolds stress tensor is commonly modeled by using an eddy viscosity. i.e., 
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For eddy viscosity, the Smagorinsky model given by 
 

 ( ) ( )2
1

kk
2

ST DDc ll∆=ν ,            (14) 
 

is frequently used. Here ∆  is the size of the grid ( ( )3
1

321 ∆∆∆=∆ ), and Sc  is the 
Smagorinsky constant, which is about 21.0cS ≈  (0.17 – 0.24). 
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 The Leonard stresses need not be modeled and may be calculated as part of the 
solution. The cross stresses was modeled as (Reynolds et al.) 
 

 ( )ijijr
c
ji uuuuct −ρ−= ,            (15) 

 
where 1.1c r =  was originally suggested. Speziale found 1c r =  make the equation 
Galilean invariant as is required by the Navier-Stokes equation. 
 
 
Turbulent Channel Flow  
 
 
 Sample results for direct numerical simulation for a turbulent channel flow is 
presented in this section.  Here it is assumed that the flow in the axial and the transverse 
directions are periodic with period of 660 wall units.  The distance between the walls is 
250 wall units. The no slip boundary conditions at the surface of the plates at 125y ±=+  
are imposed.  Figure 1 shows the instantaneous velocity vector field at a section across 
the channel at 200t =+  and 5.157x =+ .  While the vector field is random, the presence 
of structures near the walls could be clearly seen from this figure.   
 
 
 

  
 
 
 
 Figure 2a shows another sample instantaneous velocity vector field in the yz-
plane at 100t =+  and 25.236x =+ .  While the vector flow varies randomly, it is seen 
that its general features are similar to those observed in Figure 1.  The structures near the 
wall are still present but are partly shifted and modified.  Figure 2b shows the 

Figure 1.  Instantaneous velocity vector field across the channel. 
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instantaneous velocity field at a section very close to the lower plate at .3y =+   This 
figure shows that near the wall there are roughly periodic high speed and low speed 
streaks with markedly different velocities. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 Figures 3a and 3b, respectively, show the contour plots of short-time mean fluid 
velocities in the streamwise direction, +u , and normal to the wall, +v , in the y-z plane 
near the upper wall. The short-time mean fluid velocities are obtained by spatial 
averaging over a distance of 630 wall units in the streamwise direction for a time duration 
of 100 wall units. Figure 3a shows that the mean streamwise velocity has a roughly 
periodic variation in the spanwise direction with the distances of nearby high speed (or 
low speed) regions being about 100 wall units. Similar results for +v -velocity in Figure 
3b shows alternating streams toward and away from the upper wall. Comparing Figures 
3a and 3b, it is observed that the locations of high-speed axial streams roughly 
correspond to the regions that the flow moves toward the wall, and the low-speed axial 
streams, on the average, coincide with the regions that the flow moves away from the 
wall.  

Figure 2.  Instantaneous velocity vector field at two planes in the channel. 



 

ME637  G. Ahmadi  5

 

 
Figure 4a shows the DNS simulation for different grid resolution and the 

experimental data of Niederschulte et al. for the mean velocity near the wall. Here, +s  is 
the nondimensional distance from the wall. The theoretical linear velocity profile in the 
viscous sublayer and the logarithmic variations in the inertial sublayer are also shown in 
this figure for comparison.  DNS simulations were performed for grid sizes of 

646416 ×× , 646432 ××  and 12812832 ×× .  It is observed that the simulated mean 
velocity is in good agreement with the data and the classical solutions.  

 
The simulated root-mean-square (RMS) fluctuation velocities are shown in Figure 

4b and are compared with the earlier high-resolution simulations of Kim et al.  Figure 2b 
shows that the general agreement is reasonable. Figure 2 also shows that the mean 
velocity and turbulence intensities do not change appreciably when the grid resolution is 
increased by a factor of 2 to 8.  
 

Figure 3.  Variations of axial and vertical velocity field near the upper wall. 

(a) 

(b) 
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Figure 5 shows sample contour plots of a channel flow at high Reynolds number 
using large eddy simulation (LES).   The elongated structure of flow along the flow 
direction can be clearly seen from this figure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Comparison of the DNS of mean and RMS velocity fields with different 
grid resolution with the experimental data and earlier simulation results. 
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Figure 5.  Large eddy simulation (LES) of a turbulent channel flow. 

(a) 

(b) 


