Probability Density Formulation (pdf) in Turbulence

Lundgen's pdf Formulation [Phys. Fluids (1967) Vol. 10, 969.]
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Now evaluating the time derivative of A and using chain rule, we find

TA_JATu _ A Ty,

©)
Tt Tu Tt U, 1t
But u, satisfiesthe Navier-Stokes equation and continuity. These are
2
E+uj&:-1ﬂp+n ﬂui , &: (4)
qt ™ rx T fix;
Using Equation (4) in (3) wefind
A A & . 2u. 0
JA__ A _ujﬂ“'-lﬂpmﬂ“'j (5)
It U, ;X X, 9% &
Note that
A & 0 A o) A Tu. A A
_ﬁ_uj‘ﬂu,i:'ﬂA _uj‘ﬂu,i:_ jﬁ&:-uj ﬂA:-ﬂ(uJ ) (6)
U, x5 ;5 fu; 1%, x; x;
Equation (5) may be restated as
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Taking expected value of (7), it follows that
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Equation (9) governs the probability density function of turbulent flow. It isinteresting

to note that the nonlinear convective term is automatically taken care of, but the pressure
and viscous terms need to be closed.

Lundgren introduced the second order joint density defined as
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Also taking divergence of Navier-Stokes equation, and solving the result for pressure, it
follows that
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where G(x,x() is the Green function for N? operator. The pressure term in the pdf
eguation may be restated as
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Similarly, the viscous term can be written as
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Therefore,
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Equation (14) for the first order pdf involves second order pdf, which is the
characteristics difficulty of the turbulence closed problem.

Approximate First Order pdf Closure M ethods

The transport equation for the first order pdf as given Equation (9) may be
restated as
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Lundgren Relaxation M odel

Lungren obtained the following relaxation model for first order pdf :
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In deriving Equation (17) the following closure assumptions are used:
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where
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Here, k=4, k :%u,ﬂuﬂi, and e isthedissipation rate.

Chung Modédl (Fokker-Planck Equation)

An alternative Fokker-Planck type closure model was suggested by Chung. That
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The corresponding closed pdf equation becomes
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Chung original derivation follows from a Langevin equation.

Chapman-Enskog Approximation

Using the ChapmanEnskog approximation method, Lundgren (Phys. Fluids, Val.
12, 485 (1969)) found a solution for the first order pdf. That is

. 3n; &8¢’ 56c Tk 3c.d.,c,uJ
i 2k gk 25k Tx, 2K Lb

f=f

(25)

where

— 1
¢ =U-u, d =§(ui,j +U;;) (26)



and
4k? 2

Qk% dko 3
e dtﬂ

n, = (27)

Heret isthereaxationtimeand Kk isaconstant

Equations of Balance

Multiplying the pdf transport equation by 1, ¢, and %cz and integrating over the

entire velocity space, we find

Ui,i =0, (28)
du, _ 19P 1 . (29)
dt  rx, fx,
%+&+p”du e, (30)
dt I,
where
;= (picifde, (31)
1. .
Q, :E(yic fdc. (32)

Note that the viscous diffusion term is neglected.
Constitutive Equations

The constitutive equations become
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the eddy viscosity satisfies the following equation
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Limiting cases for n; :

When diffusion is small,
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Chapman-Enskog method gives qualitatively reasonable results (with about 10 to 30%
error) for simple shear flows. Numerical results for the case of a turbulent Couette flow
obtained by Srinivansan et a. (Phys Fluids, Vol. 20, 554 (1977)) is described in
following section.



Couette Flow
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Reynolds stress profiles.



