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Successes and Failures of Stress Transport Closure Models 
 
Successes of Stress Transport Closure Models 
 

The stress transport models succeeded in predicting a number of complex flows.  
Examples of these are: 
 
• Prediction of turbulence induced secondary flows in ducts. 
• Prediction of turbulent wall flow with surface curvature. 
• Prediction of noncoincidence of the surfaces of zero shear stress and zero mean strain 

in asymmetric flow. 
• Prediction of the action of buoyancy forces on the structure of flow. 
 
 
 
Failures of Stress Transport Closure Models 
 

The stress transport models had difficulties in predicting a number of other flows.  
For example, unsatisfactory results were obtained in the following cases: 
 
• Near-wake flows behind bluff bodies. 
• Predictions of the rate of spread of round jets overestimated the experimental data by 

about 50%. 
• Isotropic approximation to the processes containing pressure fluctuations predicts 

buoyant interactions of quite wrong magnitude in many of the stress and heat-flux 
component. 
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Higher Order Moment Closure Models 
 
 
Third Order Moment and Clipping Approximation (Andre, De Moor, Lacarrere, 
Therry, and du Vachat, 1979) 
 
 Andre et al. (1979) described a third-order moment closure model that makes use 
of quasi-normal clipping approxima tion.  They used a Quasi-Gaussian assumption for the 
fourth order moment as well as the Schwartz inequality to achieve closure.  These are:   
 
Quasi-normal Approximation:  

 
cbdadbcadcbadcba ′′′′+′′′′+′′′′=′′′′            (1) 

 
Schwartz Inequality:  
 

( ) ( )( )22222
cbcbacba ′′−′′′≤′′′                     (2) 

 
Andre et al. (1979) presented the example of a turbulent buoyant flows between 

two parallel plates.  Assuming 0
x

U
i

i =
∂
∂

 and ( ) ( ) 0U,zU,zU 321 = , the governing 

equations of motion becomes: 
 

 

i

ii

x
p1

z
wu

t
u

∂
∂

ρ
−

∂
′′∂

−=
∂

∂
 (with 0wu3 == )             (3) 

 

 
z
Tw

t
T

∂
′′∂−=

∂
∂                             (4) 

 
 

( ) ( ) iji3jj3i
i

j
j

i5

ij
k

k5ijji4
jiji

3
2TuTu

z
uwu

z

u
wuc1

Tw
z
u

wuc
3
2

e
3
2

uu
e

c
z

wuu

t

uu

εδ−












δ′′+δ′′β−
∂
∂′′+

∂

∂
′′−−

δ







′′β−

∂
∂′′−






 δ−′′ε

−
∂

′′′∂
−=

∂

′′∂

(5) 

( ) 







δ′β−

∂
∂′′−−′′ε

−
∂
∂′′−

∂
′′′∂

−=
∂

′′∂
i3

2i
7i6i

ii T
z
u

Twc1Tu
e

c
z
T

wu
z

Twu
t
Tu

   (6) 

 
 



 
 

ME639  G. Ahmadi  3

 2
2

22

T
e

c
z
TTw2

z
Tw

t
T ′ε−

∂
∂′′−

∂
′′∂−=

∂
′∂                  (7) 

 

 
e

aTw
e

a
z
u

wu
e

a
z

w
e

z
a

t

2

3T2
i

i2
2

1

ε
−′′β

ε
+

∂
∂′′ε

−







∂
ε∂′

ε∂
∂

=
∂
ε∂

        (8) 

 
 

( ) wuu
e

cTwuTwuTuu

z

wu
wu

z
wu

wu
z

uu
w

z
u

wu
z

u
wu

t

wuu

ji8i3jj3iji

j
i

i
j

ji2i2
j

j2
i

ji

′′′ε−δ′′′+δ′′′+′′′β+

∂

′′∂
′′−

∂
′′∂′′−

∂

′′∂
′−

∂
∂′′−

∂

∂
′′−=

∂

′′′∂

        (9) 

 

 

( )[ ]
( )[ ]
( )[ ] 


















′′+′⋅′′

′′+′⋅′′

′′+′⋅′′

≤′′′
2/12

ji
2

j
2

i
2

2/12

i
22

i
2

j

2/12

j
22

j
2

i

ji

uuuuw

wuwuu

wuwuu

minwuu                    (10) 

 
 

 

( )
Tuu

e
c

3
1Tuu

e
c

Tuu
3
1Tuu

e
cTuTu

z
Tuwu

z
Tu

wu
z
uu

Tw
z
u

Twu
z
u

Twu
z
T

wuu
t

Tuu

kkij10kkij9

kkijji8i3
2

jj3
2

i
i

j

j
i

jii
j

j
iji

ji

′′′δε−′′′δε+






 ′′′δ−′′′ε−δ′′+δ′′β+

∂
′′∂′′−

∂

′′∂
′′−

∂

′′∂
′′−

∂
∂′′′−

∂
∂

′′′−
∂
∂′′′−=

∂

′′′∂

   (11) 

 

 

( )[ ]
( )[ ]
( )[ ] 
























′′+′⋅′′

′′+′⋅′′

′′+′⋅′′

≤′′′
2/12

ji
2

j
2

i
2

2/12

i
22

i
2

j

2/12

j
22

j
2

i

ji

uuuuT

TuTuu

TuTuu

minTuu                (12) 

 

2
i8i3

3

i
2

ii
i2

2
i

Tu
e

cT

z
TuTw2

z
Twu

z
TTwu2

z
uTw

t
Tu

′′ε−δ′β+

∂
′′∂′′−

∂
′∂′′−

∂
∂′′′−

∂
∂′′−=

∂
′′∂

       (13) 

 

 ( )[ ] 2/12

i
22

i
22

i TuTuTTu ′′+′⋅′′≤′′                    (14) 

 
 



 
 

ME639  G. Ahmadi  4

 3
10

2
2

3

T
e

c
z

TTw3
z
TTw3

t
T ′ε−

∂
′∂′′−

∂
∂′′−=

∂
′∂         (15) 

 

 2
1

323 T2T 




 ′≤′ .                      (16) 

 

In these equations iiuu
2
1

e ′′=  and iiuu
2
1

e ′′= .  The model coefficients are given as: 

 
 15.0a1 = ; 44.1a2 = ; 7.0a T2 = ; 9.1a3 = ; 
 7.2c2 = ; 5.4c4 = , 0c5 = ; 85.4c6 = ;             (17) 
 394.0c7 = ; 5.8c8 = , 5.1c9 −= ; 4c10 = . 
 
 
Asymmetric Channel Flows 
 
 The example of asymmetric channel flow as described by Andre et al (1979) is 
discussed in this section.  The mean velocity and turbulent shear stress are compared with 
the experimental data in Figure 1 and good agreement is observed.  Figure 2 compares 
the predicted mean fluctuation energy and the dissipation rate with the experimental data.  
While there are some differences, the general agreement with the data is reasonable. 

 
 
 
 
 
 

Figure 2. Comparison of turbulence kinetic energy 
and dissipation rate profiles with experimental data. 

Figure 1. Comparison of mean velocity and shear 
stress profiles with experimental data. 
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Variations of the some third order moments across the channel as predicted by the 
clipping approximation are shown in Figures 3 and 4.  The experimental data for the 
corresponding moments are also plotted in Figure 3 and 4 for comparison.  These figures 
show that the general agreement is quite reasonable.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Comparison of third order moment with 
experimental data. 

 

Figure 3. Comparison of third order moment with 
experimental data. 
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Lin and Wolfshtein (Two-point Double Velocity Correlation) (1979) 
 

Lin and Woldshtein (1979) examined the Reynolds stress transport equation given 
as  
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The pressure gradient-velocity correlation is given by  
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where G is the Green function.  Using (21), the pressure gradient –velocity correlation 
given by Equation (19) may be restated as  
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Here, 
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Note that 
4ijP  is a volume integral of the triple-velocity two-point correlation 

tensor.  For isotropic turbulence, it may be shown that 
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It is assumed that  

 
 DiffusionnDissipatioPPP
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The dissipation part is given as 
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where 1Λ , 2α  are constants and  
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Lin and Woldshtein (1979) suggested the following closure assumption for the 

two-point double velocity correlation: 
 

 ( ) ( ) ( ) ( )r,gRR
k2
3

,Q rsptijptrsij xrxxrx +=             (32) 

 
with 
 

( ) srrs uuxR ′′= ,  ( ) ( )rx +′′= jiij uxuQ .             (33) 
 
Here, rsptijg  is an isotropic sixth-order tensor. 
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The expression for the forced interaction term, 

2ijP , is given as 
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The last two terms in Equation (18) are the viscous diffusion and the dissipation terms.  
These are given as 
 

 
kk

ij
2

1ij xx

R

∂∂

∂
ν=ε , 

j

i

j

i
2ij x

u
x
u2

∂
′∂

∂
′∂ν−=ε                  (36) 

  
The dissipation is given as 
 
 ij0rij

2
r2ij M2|Q2 ν−=∇ν=ε =                    (37) 

 
Here ijM  is related to the derivative of two-point double velocity correlation tensor and 
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The final transport equation used by Lin and Woldshtein (1979) is given as 
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 The simulation results of Lin and Woldshtein (1979) are shown in Figures 5-8.  
Figure 5 compare the predicted turbulence normal and shear stresses, jiij uuU~ ′′= , in a 
homogenous shear flow with the experimental data of Champagne et al. (1971).  It is seen 
that the axial component of normal stress is about twice the stresses in the other 
directions.   The model prediction is also in good agreement with the experimental data. 
 

Comparison of the predicted turbulence intensities in a contracting duct with the 
experimental data of Uberoi and Wallis is shown in Figure 6.  It is seen that the model 
captures the features of the experimental quite well.  This figure also shows that the 
contraction  tends to make the turbulence fluctuation more isotropic. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variations of the ratio 2211 U/U  with mesh Reynolds number in a contracting 
ducts are shown in Figure 7.  The experimental data of Uberoi and Wallis is also shown 
in this figure for comparison.  It is seen that the model predictions are in good agreement 
with the data. 

 
 
 
 

Figure 5. Comparison of the predicted 
turbulence intensities and scales in 

homogenous shear flows with the experimental 
data of Champagne et al. (1971). 

Figure 6. Comparison of the predicted 
turbulence intensities in a contracting duct 
with the experimental data of Uberoi and 

Wallis. 
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The variations of the Reynolds stress distribution for a plane strain flows are 

listed in Table 1.  Here the mean strain is defined as  
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Table 1. Reynolds stress distribution in plane strain flow. 

11e  22e  33e  11U~  22U~  33U
~

 
0 4.45 -4.45 1.85 0.35 0.70 

2.6 2.6 -5.2 0.57 0.93 1.50 
-1.3 2.6 -1.3 0.48 1.36 1.36 

 
 
 

Comparison of the predicted variations of the turbulence intensities in a uniformly 
strained flow with the experimental data of Reynolds and Tucker is shown in Figure 8.  
Here a range strain ratio is used.   It is seen that the intensities decrease with the increase 
in the strain ratio and the distance form the virtual origin.  The model predictions are also 
in good agreement with the experimental data. 

Figure 7. Comparison of the effect of mesh 
Reynolds on turbulence intensity ratios, with the 

experimental data of  Uberoi and Wallis. 
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Figure 8. Comparison of the predicted turbulence 
intensities in uniformly strained flows with the 

experimental data of Reynolds and Tucker. 
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Multiple-Time-Scale Concepts in Turbulent Transport Modeling 
(Hanjalic, Launder, and Schiestel) (1980) 
 

 Most common stress closure models use a single time scale 
ε
k

. Thus, processes 

are assumed to occur at a rate proportional to 
k
ε

, but this assumption may be too 

restrictive in many applications.  Hanjalic et al. (1980) introduced the multiple time scale 
model.  They noted that the energy spectrum of turbulence may be divided into different 
parts are shown in Figure 9.    Here the subscript p denotes production and T identifies 
transport. 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

Let  
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For homogenous flows, the transport equations for pk  and Tk are then give as  
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The transport equations for pε  and pε  are given by 

 

Figure 9. Schematics of turbulence energy spectrum. 
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The corresponding “Stress Transport Equation” is given as  
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  Hanjalic et al. (1980) studied uniformly strained turbulence, axisymmetric jets, 

and boundary layer flows with adverse pressure gradient.  Their results are summarized 
in this section. 
 
Strained Turbulent Flows 
 

Figure 10 compares variations of turbulence kinetic energy as predicted by the 
single and double-scale models with the experimental data for contraction ratio of 4:1. It 
is seen that the double-scale model improves the agreement of the model prediction with 
the experiment.  Variations of pk  and Tk  are also shown in this figure for comparison.  

This figure shows that pk  follows the same trend as k but at lower amplitude; Tk , 
however, exhibit smaller variation in its amplitude. 
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Variations of energy transfer rates are shown in Figure 11.  It is seen that pε  

follows a trend similar to pk , and Tε  has larger values at the short distances, but 

becomes comparable to pε  at larger distances. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Variation of kinetic energies in a contraction.  ------ 
experiment; ……… single scale; ______ double scale. 

 

Figure 11. Variation of energy transfer rates in a 4:1 
contraction.   
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Turbulence Plane Jet 
 
 Model predictions for a turbulence plane jet are shown in Figure 12.   The 
experimental data of Robins (1972) for the mean velocity and Bradbury (1965) for 
turbulence kinetic energy are reproduced in this figure for comparison.   It is seen that the 
double-scale model predictions are in good agreement with the experimental data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The predicted rate of growth of the half widths of round and plane jets are 
compared with the experimental data in Table 2.  It is seen that the multi-scale model 
predictions are in good agreement with the experimental data. 
 
 

Table2.   Rate of growth of half widths of round and plane jets 
Flow Experiment Single-Scale Double-Scale 

Plane Jet 0.11 0.109 0.116 
Axisymmetric Jet 0.086-0.090 0.115 0.098 

 
 
 
 
 

Figure 12. Variation of mean velocity and turbulence kinetic 
energy in a plane turbulent jet flow.  ------ double scale;  

______experiment. 
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Boundary Layer Flows with Adverse Pressure Gradients 
 
 Hanjalic et al. (1980) used the double-scale model in their analysis of boundary 
layer flows with adverse pressure gradient.    The corresponding variations of the skin 
friction coefficient and the pressure gradient parameters are shown in Figure 13.  The 
experimental data of Bradshaw (1969) and the single-scale model predictions of Launder 
et al. (1975) are also reproduced in this figure for comparison.  The marked improvement 
of the model predictions with the use of double-scale model can be clearly seen from 
Figure 13. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Variation of skin friction coefficient and the pressure gradient parameters in 
a turbulent boundary layer flow with adverse pressure gradient.  ______ double-scale; 

------Single-scale, Launder et al. (1975); • experiment, Bradshaw (1969) . 
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The predicted variation of mean velocity and turbulence shear stress in a turbulent 
boundary layer flow with adverse pressure gradient are shown in Figure 14.  The 
experimental data of Bradshaw (1969) are also shown in this figure for comparison.  It is 
seen that the double–scale model  well predicts the experimental data. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Variation of mean velocity and turbulence shear stress in a turbulent 
boundary layer flow with adverse pressure gradient. Comparison with the 

experimental data of Bradshaw (1969). 
 


