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Successes and Failures of Stress Transport Closure Models

Successes of Stress Trangport Closure Models

The stress transport models succeeded in predicting a number of complex flows.
Examples of these are:

Prediction of turbulence induced secondary flowsin ducts.

Prediction of turbulent wall flow with surface curvature.

Prediction of noncoincidence of the surfaces of zero shear stress and zero mean strain
in asymmetric flow.

Prediction of the action of buoyancy forces on the structure of flow.

Failures of Stress Transport Closure Models

The stress transport models had difficulties in predicting a number of other flows.
For example, unsatisfactory results were obtained in the following cases:

Near-wake flows behind bluff bodies.

Predictions of the rate of spread of round jets overestimated the experimental data by
about 50%.

Isotropic approximation to the processes containing pressure fluctuations predicts
buoyant interactions of quite wrong magnitude in many of the stress and heat-flux
component.
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Higher Order Moment Closure M odels

Third Order Moment and Clipping Approximation (Andre, De Moor, Lacarrere,

Therry, and du Vachat, 1979)

Andre et al. (1979) described a third-order moment closure model that makes use
of quasi-normal clipping approximation. They used a Quasi-Gaussian assumption for the

fourth order moment as well as the Schwartz inequality to achieve closure. These are:

Quasi-normal Approximation:
abEeit= abicit+ atib&it+ atithee

Schwartz Inequality:
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Andre et al. (1979) presented the example of a turbulent buoyant flows between
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two paralel plates. Assuming Uiﬂ7=0 and U,(z),U,(z),U,=0, the governing

equations of motion becomes:
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In these equations e=%ulﬂul¢ and €= %Tﬂﬂ: The model coefficients are given as:
a, =0.15; a, =1.44; a,r =0.7; a, =1.9;
c, =27, c, =45, c,=0; C, =4.85; (17)
c,=0.39%4; c,=85, C,=-15; c¢,=4.

Asymmetric Channel Flows

The example of asymmetric channel flow as described by Andre et a (1979) is
discussed in this section. The mean velocity and turbulent shear stress are compared with
the experimental data in Figure 1 and good agreement is observed. Figure 2 compares
the predicted mean fluctuation energy and the dissipation rate with the experimental data.
While there are some differences, the general agreement with the datais reasonable.
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Figure 1. Comparison of mean velocity and shear
stress profiles with experimental data.

Figure 2. Comparison of turbulence kinetic energy
and dissipation rate profiles with experimental data.
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Variations of the some third order moments across the channel as predicted by the
clipping approximation are shown in Figures 3 and 4. The experimental data for the
corresponding moments are also plotted in Figure 3 and 4 for comparison. These figures
show that the general agreement is quite reasonable.
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Figure 3. Comparison of third order moment with Figure 4. Comparison of third order moment with

experimental data. experimental data.
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Lin and Wolfshtein (Two-point Double Velocity Correlation) (1979)

Lin and Woldshtein (1979) examined the Reynolds stress transport equation given

as
Rmz-aeulmgﬁ uqugﬂ___ T ows g - 1 u¢‘ﬂ_p+ ug o'
Dt g X, g X, ré X, ‘ﬂx,g (18)
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The pressure gradient-velocity correlation is given by
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where G is the Green function. Using (21), the pressure gradient —velocity correlation
given by Equation (19) may be restated as

R =R, tR, *R. R, (22)
where
P, = g QJQE Y, + Guﬂ: (Forced Interaction) (23)
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Here,
S, = ubiug, S, = udA Jui(BJu(B). (27)
Note that P, is a volume integral of the triple-velocity two-point correlation
tensor. For isotropic turbulence, it may be shown that
P, =" 2882—k92 d, (S }%dr (h - isotropic triple-velocity correlation) (28)
ha &3 g "¥rdr
It is assumed that
=P, *R., = = Dissipation + Diffusion (29)
The dissipation part is given as
P, = L, X (1+a,R,), (30)
where L ,, a, are constants and
2
R, =k2— (31)
n

Lin and Woldshtein (1979) suggested the following closure assumption for the
two-point double velocity correlation:

Q(6r) = R ()R, (X + 1) (1) @)
with
Rrs(X)ZM’ Qij :ui (X)UJ(X'*'I'). (33)

Here, g,y IS an isotropic sixth-order tensor.
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The expression for the forced interaction term, P, , isgivenas

RjZ:Ap”+BBU+CMd”+E4kD A+B+C=2 (34)
3 3 3
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The last two terms in Equation (18) are the viscous diffusion and the dissipation terms.
These are given as

2
R.
g, =N TRy e, = - 2n 1t Tuf (36)
%, X, ix; 9x;
The dissipation is given as
€, = ZnerQij l-0=-2nM; (37)

Here M isrelated to the derivative of two-point double velocity correlation tensor and
satisfies the following transport equation:

O
Oy =afin, Wiim, W Ny arer,) (38)
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where
A=-1642, e,=36 (39)

The final transport equation used by Lin and Woldshtein (1979) is given as
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The simulation results of Lin and Woldshtein (1979) are shown in Figures 5-8.
Figure 5 compare the predicted turbulence normal and shear stresses, Uij = m ina

homogenous shear flow with the experimental data of Champagne et a. (1971). Itisseen
that the axial component of normal stress is about twice the stresses in the other
directions. The model prediction is also in good agreement with the experimental data.

Comparison of the predicted turbulence intensities in a contracting duct with the
experimental data of Uberoi and Wallis is shown in FHgure 6. It is seen that the model
captures the features of the experimental quite well. This figure aso shows that the
contraction tends to make the turbulence fluctuation more isotropic.
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Figure 5. Comparison of the predicted Figure 6. Comparison of the predicted
turbulence intensities and scalesin turbulence intensities in a contracting duct
homogenous shear flows with the experimental with the experimental data of Uberoi and
data of Champagne et a. (1971). Wadllis.

Variations of the ratio U,,/U,, with mesh Reynolds number in a contracting
ducts are shown in Figure 7. The experimental data of Uberoi and Wallis is also shown
in this figure for comparison. It is seen that the model predictions are in good agreement
with the data.
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Figure 7. Comparison of the effect of mesh
Reynolds on turbulence intensity ratios, with the
experimental data of Uberoi and Wallis.

The variations of the Reynolds stress distribution for a plane strain flows are
listed in Table 1. Here the mean strain is defined as

—_1@U, 10

€ == . 42
T T (42)
Table 1. Reynolds stress distribution in plane strain flow.
ell e22 e33 U 11 U 22 U 33
0 4.45 -4.45 1.85 0.35 0.70
2.6 2.6 -5.2 0.57 0.93 1.50
-1.3 2.6 -1.3 0.48 1.36 1.36

Comparison of the predicted variations of the turbulence intensitiesin a uniformly
strained flow with the experimental data of Reynolds and Tucker is shown in Figure 8.
Here arange strain ratio isused. It is seen that the intensities decrease with the increase
in the strain ratio and the distance form the virtual origin. The model predictions are al'so
in good agreement with the experimental data.
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Figure 8. Comparison of the predicted turbulence
intensities in uniformly strained flows with the
experimental data of Reynolds and Tucker.
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Multiple-Time-Scale Concepts in Turbulent Transport Modeling

(Hanjalic, Launder, and Schiestel) (1980)

. . k
Most common stress closure models use a single time scale —. Thus, processes
e

. € . .
are assumed to occur at a rate proportiona to R but this assumption may be too

restrictive in many applications. Hanjalic et al. (1980) introduced the multiple time scale
model. They noted that the energy spectrum of turbulence may be divided into different
parts are shown in Figure 9.  Here the subscript p denotes production and T identifies

transport.
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Figure 9. Schematics of turbulence energy spectrum.
Let
k»kp+k;

For homogenous flows, the transport equations for k,, and k. are then give as

DkP =- ulflug:&_ ep
Dt fx;

DK, e e

Dt

The transport equations for €, and e, are given by

12

(43)

(44)

(45)



Clarkson

University

De, e e
CpP.—- Cp,—+Dyg, (46)
Dt PL K, P2 K, eP
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Dt 'k kg
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where D, D, being diffusive transport and P, = - u,ﬂuﬂiﬂ— is the turbulence kinetic
X .
J
energy production. The model parameters are given as

ke
Kot 6

e=e, —22 Cp, =1.8- 03kT ,CT1:1.08—P (48)
P41 eT
K,

C =1.15, D —022—3 ﬂlj k T 2, ] ~Kp, ki, €5, € (49)
Pﬂ k@

The corresponding “ Stress Transport Equation” is given as
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Hanjalic et al. (1980) studied uniformly strained turbulence, axisymmetric jets,
and boundary layer flows with adverse pressure gradient. Their results are summarized
in this section.

Strained Turbulent Flows

Figure 10 compares variations of turbulence kinetic energy as predicted by the
single and double-scale models with the experimental data for contraction ratio of 4:1. It
is seen that the double-scale model improves the agreement of the model prediction with
the experiment. Variationsof k, and k, are aso shown in this figure for comparison.
This figure shows that k, follows the same trend as k but at lower amplitude; k.,

however, exhibit smaller variation in its amplitude.

13



Clarkson

University

Variations of energy transfer rates are shown in Figure 11. It is seen that e,
follows a trend similar to k,, and e; has larger values at the short distances, but

becomes comparableto e, at larger distances.
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Figure 10. Variation of kinetic energiesin a contraction. ----
experiment; ......... single scale; double scale.
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Figure 11. Variation of energy transfer ratesin a4:1
contraction.
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Turbulence Plane Jet

Model predictions for a turbulence plane jet are shown in Figure 12. The
experimental data of Robins (1972) for the mean velocity and Bradbury (1965) for
turbulence kinetic energy are reproduced in this figure for comparison. It is seen that the
double-scale model predictions are in good agreement with the experimental data.
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Figure 12. Variation of mean velocity and turbulence kinetic
energy in aplane turbulent jet flow. ------ double scale;
_ experiment.

The predicted rate of growth of the haf widths of round and plane jets are
compared with the experimental data in Table 2. It is seen that the multi-scale model
predictions are in good agreement with the experimental data.

Table2. Rate of growth of half widths of round and plane jets

Flow Experiment Single-Scale Double-Scale
Plane Jet 0.11 0.109 0.116
Axisymmetric Jet 0.086-0.090 0.115 0.098
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Boundary Layer Flows with Adverse Pressure Gradients

Hanjalic et al. (1980) used the double-scale model in their analysis of boundary
layer flows with adverse pressure gradient.  The corresponding variations of the skin
friction coefficient and the pressure gradient parameters are shown in Figure 13. The
experimental data of Bradshaw (1969) and the single-scale model predictions of Launder
et a. (1975) are also reproduced in this figure for comparison. The marked improvement
of the model predictions with the use of double-scale model can be clearly seen from
Figure 13.
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Figure 13. Variation of skin friction coefficient and the pressure gradient parametersin
aturbulent boundary layer flow with adverse pressure gradient. double-scale;

------ Single-scale, Launder et a. (1975); - experiment, Bradshaw (1969) .
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The predicted variation of mean velocity and turbulence shear stressin a turbulent
boundary layer flow with adverse pressure gradient are shown in Figure 14. The
experimental data of Bradshaw (1969) are also shown in this figure for comparison. It is
seen that the double-scale model well predicts the experimental data.
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Figure 14. Variation of mean velocity and turbulence shear stressin aturbulent

boundary layer flow with adverse pressure gradient. Comparison with the
experimental data of Bradshaw (1969).
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