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In this section, an introduction to the historical development in turbulence
modeling is provided.
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VISCOUS FLOW

The conservation laws for a continuous media are;

Mass
Ir o
—+Nxru)=0
T Xr u)
Momentum
L R
dt

Angular Momentum

tT =t
Energy

rée=t:Nu+Ng+rh
Entropy Inequality

.~ .0, rh
rh-Nx=)-—>0
>(T) T2

Constitutive Equation
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Experimental evidence shows that for aviscous fluid, the stress is a function of

velocity gradient. That is
ty =-pdy +Gy(u;;)
The velocity gradient term may be decomposed as

u; =d; +w;

where d; isthe deformation rate tensor and w; isthe spin tensor. These are given as

1 1
dy :E(uk,l + Uy, Wy ZE(uk,l - U)
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The principle of Materia Frame-Indifference of continuum mechanics implies that the
stress is generated only by the deformation rate of media and the spin has no effect. This
is because both stress and deformation rate tensors are frame-indifferent while spin is not.
Thus, the general form of the constitutive equation is given as

ty =-pdy +F(dy)

For a Newtonian fluid, the congtitutive equation is linear and is given as

ty =(-p+lu;)d, +2md,

The entropy inequality imposed the following restrictions on the coefficient of viscosity:
3l +2m>0, m>0,

Using the constitutive equation in the balance of momentum leads to the celebrated

Navier-Stokes equation. For an incompressible fluid the Navier-Stokes and the
continuity equations are given as

2
r(Mpy My = To o TU
qt ‘ﬂxj X, ‘ﬂxj‘ﬂxj

flu _

1%

These form four equations for evaluating four unknowns u, , p.

TURBULENT FLOW

In turbulent flows the field properties become random functions of space and
time. Thus

u, =U, +u¢ u=U,, u¢=0

p:P+p( E):P,Eq::()

Substituting the decomposition into the Navier-Stokes equation and averaging leads to
the Reynolds equation.
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Reynolds Equation

, _
Wy 18P, TV Tugug
ﬂt ﬂxj r ﬂxi ﬂxjxj ﬂxj

Here

t; =-rufu¢ =Turbulent Stress Tensor

First Order Modeling (Classical Phenomenol ogy)

Boussinesq Eddy Viscosity:

tl, =-rW¢:ran—U
dy

tr - W TU.. 1

— =-ult=n, (—+—)- = d

r ] T(ﬂxj 1.[XI) gg 1)

Prandtl Mixing Length

U  qU

th =r 12 e

21 |ﬂy|ﬂy

RTINS TS
Ty s Ty

Kolmogorov-Prandtl Expression

Eddy Viscosity

n;»cu/, u = velocity scale, /=length scale, c = congt.
Kinematic Viscosity

nu cl , ¢c= speed of sound, | = meen free path

Let

m

u~£m|£|’ g:gmp n_l_:g2 |E|
iy iy

For free shear flows
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¢ ~cl, (£, = haf width)
Closeto awall
¢, =ky (y = distance from the wall)

Local Equilibrium

For local equilibrium

Production = Dissipation <:> Mixing length Hypothesis

Shortcomings of the Mixing Length M odel

When W, Ob n;=0
iy
Lack of transport of scales of turbulence

Estimating the mixing length, 7.

—/ =

€

Reattachment Point /

Schematics of flow over a backward facing step.
At the reattachment point % =0, which leads to vanishing eddy diffusivity and

thus negligible heat flux. Experiments, however, show that the heat flux becomes
maximum at the reattachment point.



One-Equation Models

Eddy Viscosity

n, =c k'?¢,

Exact k-equation
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k= %m = Turbulence Kinetic Energy

dumg_ E'( ufug P% ooV uefug 97 umg
dt 42 'ﬂX B ", '"X > XX 2
'(I;?er\]r:lsepcgr\tle TurbulenceDiffusion Production Dissipatin ViscousDiffusion
where
d ufuf = convective transport, —+U ji
dt 2 fx;
¢ PC
T g(u,du, +E) = turbulence diffusion
X, 2 r
m& = production
i
AJUETUS - sipation
‘ﬂx X,
, —
T M: viscous diffusion
x X
Modeled k-equation
dk _ T ,n; K 1, , U, v k"
He Ly, Eev B
dt X, s, X, X, 4
where
L ﬂk) = turbulence diffusion, S, »1(turbulence Prandlt number)
ix; sy X,
nT(ﬂU‘ l) d = production,
ix;

J
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3/2

Co = e =dissipation.

Note that the turbulence length scale 7 is given by an algebraic equation.

Bradshaw’s M od€l

Modeled k-equation
3/2

dk_ —( Bk, /=) + akE - Cp k

dt \I r Ty !
where

akE = production

3/2
Co = dissipation

- uC=ak (shear stress kinetic energy)

ty y y
= _Max _'gzdf_
v? g(d) (d)

Shortcomings of One-Equation Models

Use of an algebraic equation for the length scale is too restrictive.
Transport of the length scale is not accounted for.

Transport of Second Scale (Boundary Layer)
The transport of a second turbulence scale, z, isgiven as

z-Equation

_ 1,9z n; k
-c,—]+S
dt T[y S ﬂy) [1 ( C2 nT]+ z
where



(n |4

) = diffusion
‘ITy S,

(—)2 = production

k :

C, — = destruction,
Ny

S, = secondary source

Choicesfor z
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Turbulence Time Scale= //?/k

Turbulence frequency Scale = v k/ ¢?
Turbulence mean-square vorticity Scale=k/ ¢?

o Tuet Jue
Turbulence Dissipation = e= n‘"u ui
i, 'ﬂxI
z=kt
e -Equation (exact):
%—-i(ude) ‘ﬂu¢‘ﬂu¢‘ﬂuﬁ: ‘ﬂ u¢ T°uc
dt Tx; ‘ka x, 1, ‘ka‘ﬂx x, 91,
Diffusion Generationby Viscousdestructian
vortexstretching
Note that R
oK KT E(k) Universal Equilibrium
0 e
Thus .
k2 \
n; ~ ko~
e

Note dsothat e isalso the amount
of energy that paths through the
entire spectrum of eddies of
turbulence.

Inertia
Subrange

A 4

Schematics of turbulence energy spectrum.
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Two-Equation Models

The k- e Model

C. Kk’ — u._ U, 2
n,=——, -uut=n, (—+—21)- Zkd.
T e [l T(ﬂxl- ﬂxi) 3 ij
k-equation
. U,
de_ 1 U Tk 9 TY U
dat T, s, Tx; JLSTRR ' SR S e
Diffusion Pr oduction
e-eguation
de _ ur Tk e, , Y 1, e’
( T elnT ( J) - Ceo— s
dt ‘Hx S, 1X; k"1, ‘Hxi X, K
Diffusion Generation Distruction
where

c,=0.09,c,=145,c, =19,s, =1, s, =13, (Jonesand Launder, 1973)

Momentum

Mass

Closure: Six Equations for six unknowns,v,, P, k, €.

K olmogor ov M odel

%=2uTs,js e ae (KT
Pr oduction %f—’ N ﬂX WﬂX ,
Dissipatin Diffusion
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% =- 1W2 +2A¢l(£ﬂ_k)

dt 10 ix; "wix,
- TU,

n, :A_k' S, :1 &+L)
w 2 1%, 9x;

Comparison of Model Predictions
In this section comparisons of the predictions of the mixing length and one and

two-equation models with the experimental data for simple turbulent shear flows are
presented.

Development of Plane Mixing Layer (Rodi, 1982)

a2f~ [ 20m ~
(initial profile)
0 | 2 | 1
- 0 S 10 15

CROSS-STREAM DISTANCE ., cm

It is seen that the k - € model captures the features of the flow more accurately
when compared with the one-equation and mixing length model.

10
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Turbulent Recirculating Flow (Durst and Rastogi, 1979)

The k- e mode predictions for turbulent flow in a channel with an
obstructing block are compared with the experimental data.

- ° ® e DATA
2 ( 105 103k — CALCULATION
. ‘ .
. 2N - . >
hm r— . -
2 4 o0 1 2 3 & 5 6 1 8 8§ 1
x/H

a) stream lines

1 ’/{/\/////////// LLLLL, //// LLLLLLY.,
.

////1////"//////////111/11// LLLLLLLLLLLLLL
y/O ¢
0751 '\ x/He| \‘\// x/Ha8
3 / .
050 F a_,_ .~
-~ N
A uiu,, -7 } u S
oh e b L f We ¥
_'////7/////_’f///o'/'s’//////. '///7//// 7
RN
b) Velocity profiles

Flow in a Square Cavity (Gosman and Y oung)

The k- € model predictions for a square cavity are shown in this section.

11
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Free-Stream Turbulence

The free stream turbulence affects the skin friction coefficient. The mixing length

model can not predict such effects. The k- e model does areasonable job in predicting
the increase of skin friction coefficient with the free stream turbulence.

S
- Ty
3 0 —0 0 S o
Cq 10 .Xﬁ'—l
O\'\A _-i — ——
3 Q la. _"""o
2 Y T
0.6 0.7 x[(m] 0.8

Turbulent Channel Flow (Rodi, 1980)

Distribution of mean velocity and turbulence quantitiesin fully developed two-
dimensional channel flows was predicted by Rodi (1980) using an algebraic stress model
(amodified k - e model)

symmetry plane
0 02 04 0;6/0i8 10 U/Um

140" : -
al |
] e k \ Expts
a8 ®v2({g5)
Closed Channel ° °€
0 ann Q640
. %1 Pred. 32)]
"ox.q
0.24
0 »
0O 04 08 12 15 20 24 28 32
0eH, vI ¥
U? U2 U

12
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free surface
0 02 OLI-/OE_ZBLB 1.10 U/Un

aly
e k \ Expts
®v2((93]
o€
Open Channel
Flow Pred.(32]

Jets Issuing in Co-flowing Streams (Rodi, 1982)

¥
For ajet, q= Ui O/ (U - Ug)dy = Excess momentum thickness

E 0
Plane Jet Round Jet
50 20
lines : predictions [37,35) —— predictions [35)

30415 ot (PR) u_g""' {%?/
U 2 112 Uo x+
ol % yd L ] Y
201 / 8- (4 /
/<k: model &

= .09 1 o
SEL AL

/ 1Egn.model>—"_~ o 126
o - . ]
1015 = 4 /; 3 235} Reicharat (16)
_ .
/" oo .600
/4’< Mixing length 1 o 1 Maczynski (117)
Z hypothesis o .500 Ortega [118)
o - T 1] T ] T T . 1 T v
0 20 L 60 80 19 120 (] 20 4 60 80 100 120 140

x/0 x/0
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Shortcomings of the k- e Model

_ UL
- UI(IU(]]:: n, (& +L) - gkdij
ix; T 3

Limited to an eddy viscosity assumption.

Eddy viscosity and diffusivity are assumed to be isotropic.
Convection and diffusion of the shear stresses are neglected.
Normal turbulent stresses are not considered.

Main assumptionis: ufu¢~k.

Stress Transport Models

Subtracting the Navier-Stokes equation form the Reynolds equation, we find an
evolution equation for the turbulence fluctuation velocity. That is

2 —_—
W, g e 1T08,, TU8, T ime- T owp-uele
It X, r 9x, > Ix, TIX, X, X,

fug  Tug_ 1qp, Toug g
T4y —JL=_= +n L+ (]U - —(uu u 2
Tt e rTx T Tx TX, ¢ ( 9 E Xy ()

Multiplying Equation (1) by uf, and Equation (2) by uf, adding the resulting equations
and averaging leads to the exact stress transport equation:

¢ u¢ p quc Tue

(_+ U —)ugugt— [uﬂug:—+uqug - ondut U7 | P quf T4
“fix K Xy k X, Ix, r %, X

Convection Pr oduction Dissipatinn m

1 =z, P 1 —
- R[Umwﬂ:"'r_(ui@jk +U}rdik) - nﬂTuiqUﬂ

k

Diffusion

where

[uaug—’+ uaug '] = production,

k k

14



¢
2nﬂ_u¢ T} = dissipation,
X, Tx,
(‘ﬂu¢ T} —71) = pressure strain
ix; X

1 9 1
ﬂ_[uiqu}lug-'-r(ulqdjk +u, ) - nﬂ_

k Xy

ugug] = diffusion.

Modeling Diffusion:

- U =c

Pressurediffusion » O
Viscous diffusion » O

Modeling Dissipation

‘ﬂu¢‘ﬂu 2d
‘Hx x, 3"

Modeling Pressure-Strain

ﬂu¢‘ﬂug) (‘ﬂu¢ ‘ﬂ
™ X

1)
i

‘Hu¢ ‘Hu )}

o qut ut
B(ﬂ_ulq:.pB) =- c‘jjle(X’Xl){ ( )

rofx; I

( ') (““95)1(

X

j ﬁz)ﬂ Ei

where

j o= _Cl( )(uﬂu¢ d; k) (Return to isotropy)

. . 2 .
j i(jZ) +j §|2) =-oP,- Epdij) (Rapid term)

Here

g )

ij ]
k Xk

U
P, :-(uaug:l

15
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Pressure-Srain Correlation

o ut Tue
p &+L) ,iscritical to the stress

Modeling the pressure-strain correlation, — (
r )
j i
transport equations.

Navier-Sokes Equation

T, Tu_ 1, fu

1)
Tt e X X9
Taking the divergence of (1), we find
2 2
TILIiuk:_l ﬂp, (2)
X%, MX, rox9x;
or
2
NZE:- ﬂ uiuk (3)
r X, X,
Averaging Equation (3), theresult is:
_ ) ——
Nzgz_ﬂ uu, 1 ulquﬁt (4)
r > Ix, I IX,
Subtracting (4) from (3), we find
7P o oMU Tup fugfug  Tupflug )
r ™ ™ X X X, X,
Introducing the Green function G(x,x,) for the Poisson equation. i.e.,
RN2G(x,x,) = d(x- X,), (6)

Equation (5) may be restated as

16
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I=_ \ ' 7
= PG T T, T ™
The pressure-strain rate correlation then becomes
P ‘Hu|¢+‘ﬂuﬂ3 . Tug fug, Tug fu¢ ‘ﬂug ‘Huﬂ: ‘HuJ
—(—t+t—)=- : +2 dx,
PG, ) T Pl g )t G )ﬂ. L

(8)
or -
‘|]u¢ fug, : :
'°(ﬂx ﬂX.) =i 0+ P+ D) (9)
Note that for unbounded regions
1 1
G(X,x,) =-— : 10
()= = (10)

Modeled Stress Transport Equation

U
(U, U= - [ + ]- 24,
fit X, ﬂxk |
Convection Pr oduction Dissipation

(uﬂU¢ gd.,k)+0 DG )
\_qf_—J

e, _{ [ﬂup H: GUI ugu(t

Wall effects

+ugug fufug
U?Uftﬂ—)(l]}

Diffusion

where

_ U.
[ugmg&+ ugugﬂ—’] = production
ix X,

k

gdije = dissipation,
€ —¢ 2 _ .
ClE(u,ﬂUJ - Edijk) = pressure-strain

fugut —— Tu@

c—{ [ QJMWL udug

1-[ke X ﬂ| ﬂx|

17

+ugut——1]} = diffusion.
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Dissipation Equation

2
Eru Dye=c - Cupp S o tumgl - e S
Tt %, ° 11X, X, k X, Kk
Convection Diffusion Generation Destruction
where
ﬂﬂ ku@ pi—) = diffusion,
e—-
uflug Ui _ = generation
“k X
2
c.,— = destruction.

e2

Reynolds Equation

(1+Uji)ui=' oo Ul
It ﬂxj X; ﬂXj

Continuity Equation

o,
fix

=0

Closure

There are eleven equations for eleven unknowns, U, , P, uu¢, e.

18
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Comparison of Model Predictions

In this section comparisons of the predictions of the stress transport model with
the experimental data for ssimple turbulent shear flows are presented.

Curved Mixing Layer (Gibson and Rodi, 1981)

Ur f—curved region
A A A A A A A A A A 0
0 0 20 0 &L SO 60 VW 8 9 100

s(cm)

19
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Asymmetric Channel Flow (Launder, Reece and Rodi, 1975)

Mean Velocity and Turbulent Shear Stress

0 02 04 06 08 190

20} (o] Turbulence Intensities

(1)

0 05 10

-~ ID

20
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Algebraic Stress Transport Model (Rodi, ZAMM 56, 1976)

A simplified stress transport model is given as:

- U. _
iuiquq;: Csi(h ugugluﬂ:u(]:)_ ui(]iJﬂ:L_ u(]]_jﬂ:&
dat " x, e ix, ! | ™%, 7 X,
Diffusion Production , (1)
2
(uﬂu¢ d; k) a(R; P)- —de
Pr essure- Strain Dissipatin
where
i :‘ﬂi 5 ugu p;i diffusion,
P = UiQJﬁP qug Yi - = production,
k k
(uﬂu¢ d; k) a(P, P) = pressure-strain,

gdije = dissipation.
3
Here, P= 1 P. isthe production rate of turbulent kinetic energy. Contracting

Equation (1), we find the transport equation for k:

e —(—um >um -e @

dt ﬂxm Dissipatin

Diffusion Production

where
1T k—— 1k e
D=—(—ugug—) =diffusion
x, e ¢ X,
—— U .
P= ugup‘”— = production
X,
Rodi (1976) assumed that

o
(. py=—"I(p- g, ©)

21
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Using (3) in (1) and rearranging, the result is:

¢ R 2P @
e P T U
nug=keZd + 9 e 3e Ty (4)
&3’ ¢ 1, P g
8 c, e 'f

Equation (4) provides an algebraic expression for ugug:

For simple shear flows, it may be shown that equation (4) reduces to the
Kolmogorov-Prandtl hypothesis with

n; =c 5)

m

k2
e
and

1 P
__20-9 [1- C—l(l' gg)]

B
e

1

with g =0.6 and ¢, =1.8- 2.2. (6)

Conclusions (Existing Models)

Available models can predict the mean flow properties with reasonable accuracy.
Small adjustments of parameters are sometimes necessary!

First-order modeling gives reasonable results only when a single length and velocity
scale characterizes turbulence.

The k- e mode gives relatively accurate results when a scalar eddy viscosity is
sufficient to characterize the flow. That is there is no preferred direction for example
through the action of a body force.

The stress transport models have the potential to most accurately represent the mean
turbulent flow fields.

Deficiencies of Existing M odels

Adjustments of coefficients are sometimes needed.

The derivation of the models are somewhat arbitrary.

There is no systematic method for improving a model when it loses its accuracy.
Models for complicated turbulent flows (such as multiphase flows) are not available.
Realizability and other fundamental principles are sometimes violated.

22
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For example, the transport equations for F, F, w2 must always lead to positive
values of these quantities. In addition, the transport equations for the cross terms
must also lead to cross correlations that satisfy Schwarts inequalities. i.e.,

uév?- ue” >0

23



Anisotropic Rate-Dependent M odel
Averaged Balance L aws:

Mass

Linear Momentum

rv, =t +tj, +rf,
Thermal Energy

ré=q; +q) +t,v,; tre+r

iVii
Fluctuation Energy

rk=tjv,, +K,-re
Clausius-Duhem Inequality

rh-(gJd),- R\ -rJ+rh"- S, >0

Helmholtz free Energy Function

h . h
=e- —, =k- —
y J y J7

Heat Flux-Coldness Correlation
R =q/J

Fluctuation Energy Flux-Turbulence Coldness Correlation
S =KJ'-E

Total Heat Flux

Q =q +q'

24
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Clausius-Duhem Inequality

+J |-rg/T hT‘]ng-iTK,JTl+ Tl +tiv, - T .T'JEO
- SRNRUT JE, i
Constitutive Equations
Stress
t; =-pd; +2nd,
tg=-§rkdij+rM%+mT%(2+g2dkldkl +bt83dk,dk|d d dkj%

Jaumann Derivative

Deformation Rate and Spin Tensors

1 1 1
d..=§(vi,j+vj,i), W, =2, - vy), D=2dyd,

Heat Flux
_® Mo
focap

Fluctuation Energy flux

T

moe k. U
sk%" t 'H

x
K, =

Heat Capacity

25
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Thermodynamic Constraints
m >0,s%>0, g>0, |b|2§ 489
m =C"r kt
Turbulence free Energy Function
€ %0 u
y ' =kdng—3+aC"t’D+C,
& g K g "q
Turbulence Stress
2 i D él ud
ti =- =rkd, +m'j2d, +at —d. + ¢t °d, d,d, +bt 2~d,d,d. - d. d.
i 3 i Tl Dt 1k Ykl Yij 83Ikklj kkJH)Ig
Basic Equations
v;; =0
. e 2 u i T T I:A)dii 1 2 P
rv, =-gp+—-rky +i2(m+m)d; +m[at——+bt(zd,d,d; - dy d,)+do°d,d,d;ly +rf,
&3 b i Dt 3 }
.6 m, U
rCq=gk+C—)q;g +2m,d; +re+r
& s
- y ) Dd,
rk= g(m+ﬂk)(ki - 5t i)ﬂ +P+atm —d, - re
g S ot Dt

P:mT[Zdijdij - btd,dd; +g2(dijdji)2]

26



Scale Transport Equations

T

rt = gm+ Iyt ,i’ +Ch— P+C‘3§m+ﬂk%eigtk -—t L
e S u,I
& m
m+m— 22C___14%p) 1, - rctecP
s’ ga,+2aC"t’D T
>C >0, C% >—=, = >C" >0, 2,20

aOm aO aOm

a,, max.(a, +2aC" °D)

e=CDE
t
ré= e(m+—)e.u +C61KP+Ce3gm+m Qaee glk K-
2aC" e’
m+— D—).e - rC®C% —
g kz]( ez),l il k

a + 2aCmD—

k
m=rC"—, t =
e

olx

When ¢=0, a =0.93, b=0.54
2

b
>—, g =0.005
9_48 g

C"=0.09, C* =1.45, C*? =192, s“=1,s°*=13

27

o|x
o)

Clarkson

University

t]



Clarkson

University

Comparison with the Experimental Data for Duct Flow

In this section the rate-dependent model predictions are compared with the
experimental data of Kreplin and Eckelmann, DNS of Kim et al. and the k-e model
predictions

Comparison of mean velocity profile with
the experimental data of Kreplin and
Eckelmann for Reynolds numbers of 8200
and 5600.

2.0 ]

2.0 4

v'fu,
)
/

¥ib

Comparison of vertical turbulence
intensity with the experimental data of
Kreplin and Eckelmann, DNS of Kimet

al. and k-e mode!.

28

3.0

u'fu,

0.9 1 T T 1
.0 c.2 0.4 0.6 0.8 1.0

Comparison of axial turbulence
intensity with the experimental data of
Kreplin and Eckelmann, DNS of Kim et
al. and k-e model.

3.0

Comparison of lateral turbulence
intensity with the experimental data of
Kreplin and Eckelmann, DNS of Kim et

al. and k-e mode!.



Clarkson

University

1.5

1.0

-7 fu?

¥/

Comparison of turbulence shear stress with the experimental data of
Kreplin and Eckelmann, and DNS of Kim et al.

Comparison with Experimental the Data for Backward Facing Step Flows

In the section the rate-dependent model predictions are compared with the
experimental data of Kim et al. and the algebraic model of Srinivasan et al.

Aadboidl ool pa P

‘[LLLZ_/_K .

H,

1

]
r(
Hi,

e

H

Schematics of the flow over a backward facing step.
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1.0

0.8

=236 cm. =35 am. we=40.6 cm_

0.6
ja st
T
-

0.4 —

0.2 +

0.0 {

=5.0

T 1 s I I I
5.0 180 =50 &0 150 -0 50 150
WVelocity, U {m/s)

Comparison of the mean velocity profiles with the data of Kim et a. (1978).
(Dashed lines are the model predictions of Srinivasan et al. (1983).

o ; ; )

0.8 —
%=59 c. =72 4 cm. =202 chiL =194 en.
_ 0.6 .
S - .
L]
0.4 — iy \.
7 - | "‘;
0.2 .
'f L]
s
0.0 =T T T
0.0 15.0 G.0 15.0 0.¢ 15.0

Turb, Kin. Encrgy. k (m?/s%)

Comparison of the turbulence kinetic energy profiles with the data of Kim et a. (1978).
(Dashed lines are the model predictions of Srinivasan et al. (1983).
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1.0 T
| )
0.8 '
i #=8.0 em. w=DD4 g, 2=20.2 ¢, w=310.4 em
0.6 -
=
-
0.4 ~
0.2
0.0 T T T T
0.0 20000 0.0 20000 00 20000 0.0 2000.0
Dissipntion rate, € {m?/g"}
Comparison of the turbulence dissipation profiles.
(Dashed lines are the model predictions of Srinivasan et al. (1983).
W 7 ]
~
0.8
x=¥9 cm. x=224 om. *=30.4 ¢
O.E = '
o=
T 3
- i ]
C.4 e
i
/ Y
0.2 [
. P
0.0 | ~ ]
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Comparison of the axial turbulence intensity profiles with the data of Kim et a. (1978).
(Dashed lines are the model predictions of Srinivasan et al. (1983).
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Comparison of the vertical turbulence intensity profiles with the data of Kim et al.
(1978). (Dashed lines are the model predictions of Srinivasan et al. (1983).
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Comparison of the turbulence shear stress profiles with the data of Kim et al. (1978).
(Dashed lines are the model predictions of Srinivasan et al. (1983).
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Schematics of the flow in an axisymmetric pipe expansion.
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Comparison of the mean velocity profiles with the data of Junjua et al. (1982) and
Chaturvedi (1963). (Dashed lines are the model predictions of
Srinivasan et al. (1983))
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Comparison of the axial turbulence intensity profiles with the data of Junjua et al. (1982)
and Chaturvedi (1963). (Dashed lines are the model predictions of
Srinivasan et al. (1983))
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Comparison of the vertical turbulence intensity profiles with the data of Junjuaet al.
(1982) and Chaturvedi (1963). (Dashed lines are the model predictions of
Srinivasan et a. (1983))
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Comparison of the turbulence shear stress profiles with the data of Junjuaet al. (1982)
and Chaturvedi (1963). (Dashed lines are the model predictions of
Srinivasan et a. (1983))
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