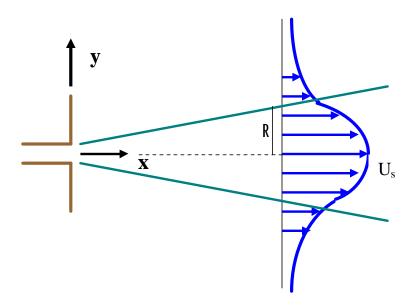


Turbulent Plane Jet Flow

Turbulent jet flow shown schematically in the figure is studied in this section.



Equation of Motion

$$U\frac{\partial U}{\partial x} + V\frac{\partial U}{\partial y} + \frac{\partial}{\partial y}\overline{u'v'} = 0$$
 (1)

Momentum Integral

$$\int_{-\infty}^{+\infty} dy \left[\frac{\partial}{\partial x} \left(U^2 \right) + \frac{\partial}{\partial y} \left(UV \right) + \frac{\partial}{\partial y} \overline{u'v'} \right] = 0$$
 (2)

or

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{-\infty}^{+\infty} U^2 \mathrm{d}y = 0. \tag{3}$$

Integrating Equation (3) we find

$$\rho \int_{-\infty}^{+\infty} U^2 dy = M = \text{Jet Momentum}$$
 (4)

That is the total momentum of the jet is conserved.

Continuity Equation

$$\frac{\partial \mathbf{U}}{\partial \mathbf{x}} + \frac{\partial \mathbf{V}}{\partial \mathbf{y}} = 0 \tag{5}$$

Introducing the stream function, ψ ,

$$U = \frac{\partial \Psi}{\partial y}, \qquad V = -\frac{\partial \Psi}{\partial x} \tag{6}$$

the continuity equation given by (5) is identically satisfied.

Self similar solutions for the mean velocity and turbulent stress are given as

$$U = U_s f(\xi), \quad -\overline{u'v'} = U_s^2 g(\xi), \qquad \xi = \frac{y}{\ell}$$
(7)

We assume

$$U_{s} = cx^{m}, \qquad \ell = Dx^{n}. \tag{8}$$

Equation (1) then implies,

$$2m-1=2m-n$$
, i.e. $n=1$

Equation (4) implies.

$$2m + n = 0$$
, i.e. $m = -\frac{1}{2}$

Hence,

$$U_{s} = Cx^{-\frac{1}{2}}, \quad \ell = Dx.$$
 (9)

Now,

$$\mathbf{x} = \frac{y}{\ell} = \frac{y}{Dx}, \quad \frac{\partial \mathbf{x}}{\partial x} = -\frac{y}{Dx^2} = -\frac{\mathbf{x}}{x}, \quad \frac{\partial \mathbf{x}}{\partial y} = \frac{1}{\ell} = \frac{1}{Dx}$$
 (10)

Integrating (6), we find

$$\mathbf{y} = \ell U_s \int_0^{\mathbf{x}} f(\mathbf{x}_1) d\mathbf{x}_1 \tag{11}$$

Let

$$F(\xi) = \int_{0}^{\xi} f(\xi_1) d\xi_1 \tag{12}$$

Then,

$$\psi = CDx^{\frac{1}{2}}F(\xi) \tag{13}$$

$$-\overline{\mathbf{u}'\mathbf{v}'} = \mathbf{C}^2 \mathbf{x}^{-1} \mathbf{g}(\boldsymbol{\xi}) \tag{14}$$

Now

$$V = -\frac{\partial \psi}{\partial x} = -CD \left[\frac{1}{2} x^{-\frac{1}{2}} F(\xi) + x^{\frac{1}{2}} F'(\xi) \left(-\frac{\xi}{x} \right) \right] = -CDx^{-\frac{1}{2}} \left(\frac{1}{2} F - \xi F' \right)$$
 (15)

$$U = Cx^{-\frac{1}{2}}F'(\xi) \tag{14}$$

$$\frac{\partial U}{\partial x} = -\frac{1}{2}Cx^{-\frac{3}{2}}F' + cx^{-\frac{1}{2}}F''\left(-\frac{\xi}{x}\right) = -Cx^{-\frac{3}{2}}\left(\frac{1}{2}F' + \xi F''\right)$$
(15)

$$\frac{\partial U}{\partial v} = Cx^{-\frac{1}{2}} F''(\xi) \frac{1}{Dx} = \frac{C}{D} x^{-\frac{3}{2}} F''$$
 (16)

$$-\frac{\partial \overline{u'v'}}{\partial y} = \frac{C^2}{D} x^{-2} g' \tag{17}$$

Using (13) - (17), Equation (1) becomes

$$-Cx^{-\frac{1}{2}}F'\left(-Cx^{-\frac{3}{2}}\right)\left(\frac{1}{2}F' + \xi F''\right) - CDx^{-\frac{1}{2}}\left(\frac{1}{2}F - \xi F'\right)\frac{C}{D}x^{-\frac{3}{2}}F'' = \frac{C^2}{D}x^{-2}g'.$$
 (18)

Simplifying (18), it follows that

$$-F'\left(\frac{1}{2}F' + \mathbf{x}F''\right) - \left(\frac{1}{2}F - \mathbf{x}F'\right)F'' = \frac{1}{D}g'$$
(19)

or

$$F'^2 + FF'' = -\frac{2}{D}g' \tag{20}$$

Introducing the eddy viscosity,

$$-\overline{\mathbf{u}'\mathbf{v}'} = \mathbf{v}_{\mathrm{T}} \frac{\partial \mathbf{U}}{\partial \mathbf{y}} \tag{21}$$

or

$$v_{T} = -\frac{\overline{u'v'}}{\frac{\partial U}{\partial y}} = \frac{U_{s}^{2}g(\xi)}{\frac{U_{s}}{\ell}F''} = U_{s}\ell\frac{g}{F''}$$
(22)

That is

$$\frac{\mathbf{v}_{\mathrm{T}}}{\mathbf{U}_{\mathrm{s}}\ell} = \frac{1}{\mathbf{R}_{\mathrm{T}}} = \frac{\mathbf{g}}{\mathbf{F}''} \tag{23}$$

or

$$g = \frac{1}{R_T} F'', \qquad R_T \approx 25.7 \tag{24}$$

Equation (20) now becomes

$$F'^2 + FF'' = -F''' \tag{25}$$

where we assumed $\frac{2}{DR_T} = 1$ and D = 0.078. Equation (25) may be restated as

$$(FF')' + F''' = 0.$$
 (26)

Integrating Equation (26), we find

$$FF' + F'' = c_1 \tag{27}$$

Boundary conditions for the jet flow are

$$F'(0) = 1, F'(\infty) = 0, F(0) = 0, \text{ (or } F''(\infty) = 0)$$
 (28)

Hence, $c_1 = 0$, and integrating Equation (27), we find

$$\frac{1}{2}F^2 + F' = c_2 = 1 \text{ or } \frac{2dF}{2 - F^2} = d\xi, \ 2\frac{1}{\sqrt{2}}\tan^{-1}\frac{F}{\sqrt{2}} = \mathbf{x} + c_3, \ c_3 = 0.$$
 (29)

Therefore,

$$F = \sqrt{2} \tanh \frac{\xi}{\sqrt{2}}, \tag{30}$$

and

$$f = F' = \frac{1}{\cos^2 \frac{\xi}{\sqrt{2}}} = \operatorname{sech}^2 \frac{\xi}{\sqrt{2}}$$
 (31)

If d is the width of the jet, then

$$\frac{U_s}{U_j} = 2.7 \left(\frac{d}{x}\right)^{\frac{1}{2}}, \qquad \ell = 0.078x$$
 (32)

where

$$\int_{-\infty}^{\infty} U^2 dy = U_j^2 d$$

$$U_j$$

$$V_j$$

Thermal Plumes

The equations governing the motion and heat transfer turbulent flows are given as

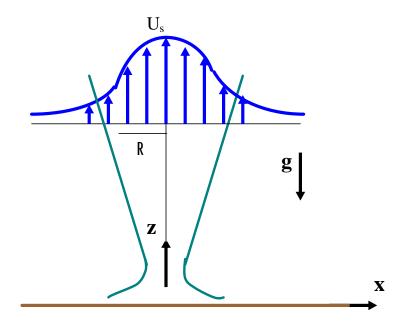
$$\left\{ U_{j} \frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial}{\partial x_{j}} \overline{u'_{i}u'_{j}} = -\frac{1}{\rho} \frac{\partial P}{\partial x_{i}} + \nu \frac{\partial^{2} U_{i}}{\partial x_{j} \partial x_{j}} + \frac{g_{0} \overline{T}}{T_{0}} \delta_{ij}, \qquad \frac{\partial U_{i}}{\partial x_{i}} = 0 \right\}$$

$$U_{j} \frac{\partial \overline{T}}{\partial x_{j}} + \frac{\partial}{\partial x_{j}} \overline{T'u'_{j}} = \gamma \frac{\partial^{2} \overline{T}}{\partial x_{j} \partial x_{j}}$$
(1)

The special case of two-dimensional thermal plumes is described in the following section.

Two Dimensional Plane Plumes

For a two a two-dimensional plume as shown in the figure, the equation of balance of moment, heat flow and continuity are given as:



$$U\frac{\partial W}{\partial x} + W\frac{\partial W}{\partial z} + \frac{\partial}{\partial x}\overline{u'w'} = \frac{g_0\overline{T}}{T_0}$$
 (2)

$$U\frac{\partial \overline{T}}{\partial x} + W\frac{\partial \overline{T}}{\partial z} + \frac{\partial}{\partial x}\overline{T'u'} = 0$$
(3)

$$\frac{\partial \mathbf{U}}{\partial \mathbf{x}} + \frac{\partial \mathbf{W}}{\partial \mathbf{z}} = 0 \tag{4}$$

In addition the heat flux integral given by

$$\int_{-\infty}^{+\infty} TW dx = const = \frac{q}{\rho c_{p}}$$
 (5)

Introducing the similarity variables

$$\mathbf{x} = \frac{x}{\ell} \tag{6}$$

the following self similar solutions may be assumed:

$$W = U_s f(\xi), \quad -\overline{u'w'} = U_s^2 g(\xi), \qquad \overline{T} = T_s \theta(\xi), \quad -\overline{T'u'} = T_s U_s h(\xi)$$
 (7)

Now let

$$U_s = Az^m$$
, $\ell = Bz^n$, $T_s = cz^p$ (8)

Equation (2) implies that

$$2m-1=2m-n=p$$
 or $n=1$ and $p=2m-1$ (9)

Equation (5) implies that

$$m+p+n=0$$
 or $m+p=-1$ (10)

Equations (9) and (10) imply that

$$m = 0$$
 and $p = -1$. (11)

Hence,

$$U_s = const$$
, $\ell = Bz$, $T_s = Cz^{-1}$. (12)

Now

$$\xi = \frac{x}{\ell} = \frac{x}{Bz}, \qquad \frac{\partial \xi}{\partial x} = \frac{1}{Bz}, \qquad \frac{\partial \xi}{\partial z} = -\frac{\xi}{z}$$
 (13)

Introducing the stream function

$$\psi = \ell U_s F(\xi), \qquad F' = f, \qquad \psi = U_s Bz F(\xi)$$
 (14)

$$W = U_s F', \qquad U = -\frac{\partial \psi}{\partial z} = -U_s B(F - \xi F'), \qquad \qquad \frac{\partial W}{\partial x} = \frac{U_s}{Bz} F'' \qquad (15)$$

$$\frac{\partial W}{\partial z} = -\frac{U_s \xi}{z} F'', \qquad T = C z^{-1} \theta(\xi), \qquad \frac{\partial T}{\partial x} = C z^{-2} \theta', \qquad \frac{\partial T}{\partial z} = -C z^{-2} (\theta + \xi \theta'), \quad (16)$$

$$-\frac{\partial \overline{u'w'}}{\partial x} = \frac{U_s^2}{Bz}g', \qquad -\frac{\partial \overline{T'u'}}{\partial x} = \frac{U_sC}{B}z^{-2}h'. \tag{17}$$

Using (14)-(17) in (2) and (3), we find

$$-U_{s}B(F-\xi F')\frac{U_{s}}{Bz}F''+U_{s}F'(-\frac{U_{s}\xi}{z})F''=\frac{U_{s}^{2}}{Bz}g'+\frac{g_{0}C}{T_{0}z}\theta$$
(18)

$$-U_{s}B(F-\xi F')\frac{C}{B}z^{-2}\theta'+U_{s}F'(-cz^{-2})(\theta+\xi\theta')=\frac{U_{s}C}{B}z^{-2}h'$$
(19)

Simplifying Equations (18) and (19), we find

$$-FF'' = \frac{1}{B}g' + \frac{g_0C}{T_0U_s^2}\theta$$
 (20)

$$-\left(F\theta\right)' = \frac{1}{B}h' \tag{21}$$

Introducing the eddy viscosity,

$$v_{T} = \frac{-\overline{u'w'}}{\frac{\partial W}{\partial x}} = -\frac{\overline{\theta'u'}}{\frac{\partial T}{\partial x}} = U_{s}\ell \frac{g}{F'} = U_{s}\ell \frac{h}{\theta'}$$
(22)

or

$$g = \frac{1}{R_T} F'', \quad h = \frac{1}{R_T} \theta'$$
 (23)

Now letting

$$B = \frac{1}{R_T} \text{ and } \frac{g_0 C}{T_0 U_s^2} = 1$$
 (24)

Then

$$FF'' + F''' + \mathbf{q} = 0 \tag{25}$$

$$F\theta + \theta' = const = 0 \tag{26}$$

The corresponding boundary conditions are:

$$F'(0) = 1, F(0) = 0, F'(\infty) = 0, \theta(0) = 1,$$
 (27)

An exact solution is not available. Here an approximate solution is presented. In the neighborhood of $\mathbf{x} = 0$,

$$F \approx \xi + \dots \tag{28}$$

It then follows that

$$\frac{\theta'}{\theta} = -\xi, \qquad \ln \theta \approx -\frac{\xi^2}{2} + \ln c, \qquad \theta \approx e^{-\frac{\xi^2}{2}}$$
 (29)

Equation (25) may then be approximated as

$$F''' + \xi F'' = -e^{\frac{\xi^2}{2}}, \tag{30}$$

The solution to (30) is

$$\mathbf{F''} = -\xi \mathbf{e}^{\frac{-\xi^2}{2}} \tag{31}$$

Integrating (30), it follows that

$$f = F' = e^{\frac{\xi^2}{2}} \tag{32}$$

Therefore, the mean velocity and temperature fields in the plume are given by

$$\frac{W}{U_s} = e^{-\frac{\xi^2}{2}}, \quad \frac{T}{T_s} = e^{-\frac{\xi^2}{2}}.$$
 (33)