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Turbulent Flow Between Two Parallel Plates

Consider aturbulent flow field between two parallel plates as shown in the figure.

U(2h)=0

The Reynolds Equation for the mean turbulent motion is given by
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Mean Flow Equations
Let
U =(U(y),00)
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Equation (3) now becomes
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Integrating (6) and noting that n— “to u z,wefind
r
y=0
y dP, Ter du 2 _
- n—-u =0
r dx d

Eliminating Oclji between (7) and (8), theresult is
X
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Introducing the dimensionless variable h = % , equation (9) may be restated as

2 L=,
42 R dh

where

Alternatively introducing y* =M , equation (9) becomes
n

For high Reynolds number flowsas R* ® ¥ , equations (10) and (12) imply
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1 (asR ® ¥, y" ~1 (surface layer)) (14)

Law of the Wall

We expect the solution to (14) to be given as

I U =f(y") U

Lawof theWall: | u&¢_ ., (15)
i — =9y )
I U b

with boundary conditions f(0) =0 and g(0) =0, and the shapesof f(y*) and g(y*) are
to be found experimentally.

Velocity Defect Law

In the core region, the turbulent stresses are given by (13) and the mean velocity
isgivenas

Velocity Defect Law: u- *UO =F(h) (16)
u

The velocity gradients from (15) and (16) may be found, i.e.

2

a _u df+ (17)
dy n dy
and
U _u dr (18)
dy h dh
Inertial Sublayer
From equations (17) and (18) in the limit of h<<1and y* >>1, wefind
*2 *
W_u o _Ud  sheo y ey (19)
y n d h dh
Multiplying (19) by -, the result is
u
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J Ao oF) 1

" const. (20)
dy dh k
Solving, we find
1
F(h) =§Inh +C, for h<<1 (21)
and
+ 1 + +
f(y ):me +c, fory >>1 (22

In the inertial sublayer from (13) or (14), we conclude that

u®e
2
u

1. (23)

Logarithmic Friction Law

The velocity defect law and the law of the wall in the inertial sublayer are given

as
U-Yo Linh+e, (24)
u k
u 1
—=ZIny" +c, . 25
N y +¢, (25)

Subtracting, we find

Yo _liRi4c,-¢, (R =4 (26)
u k n

withc, and ¢, known, equation (26) is the statement of the logarithmic friction law.
Pipe Flow
The law of the wall and the velocity defect law are also valid for turbulent pipe

flows. Equations (9) - (26) can be written for pipe flows with the following minor
changes:
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h=Y ad R =4
o n

(27)

Here, r, istheradius of the pipe and y isthe distance from the wall. For pipe flows,
k =0.4 and equations (24) - (26) become

u* =§ =25Iny* +5, isvalidforupto h» 0.25
(28)
y '*UO =25Inh-1 (29)
u
U—P =25R" +6 (30)
u
Wake Function
The wake function is defined as
Law of the Wake: W(h) =1- 2.5Inh + Hh), (31)
where F(h) isthe velocity defect law. Experiment shows that
1é. 1 .0
W(h) ==aSinp(th- =) +1. 32
(=5 ginp(h- ) +1y (32)
Viscous Sublayer
In the viscous sublayer, the Reynolds stressis negligible. Equation (14) then
becomes
M1 (33)
dy
or
U=y’ (34)
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Kolmogorov Scale

In the inertial sublayer - ude» u’ and % »E—y . The turbulent production then
isgiven as
U u*s
Production = - u®¢— = — (35)
y ky
Experiment shows that in the inertial sublayer, production is equal to dissipation:
u*3
e=— 36
o (36)
Kolmogorov scale h isgiven by
1
3 I
n=§2 37)
€g
Let
he=hu (37)
n
then
1
23 o
g u*4n3 : l
h* = c 3 - or h* =(ky")* (38)
Cnt—7
& ky g
The turbulent macroscale near the wall is given as
L =ky (39
or
L=t gy (40)
n
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Table of variation of the scales near awall

+ i L+ = k +
y h+ - (ky+)4 y
5 1.2 2
12 15 4
40 2 16
200 3 80
1000 45 400
4 L+
1000 T
10 7 h N
0.1 _ ; _

1 5 100 1000

Schematic variations of the macroscale and Kolmogorov scale in
turbulent near wall flows

From the table and the schematics diagram, it is observed that for y* £ % =25,

L* <h®™ andaturbulent flow cannot exist.




