
 

Chaotic Behavior of Deterministic Systems 
 
 Generally deterministic responses are expected when deterministic system are 
subjected to deterministic excitations, and random excitations are expected when the 
inputs are random processes.  However, it has been shown that many nonlinear systems 
with or without deterministic excitations under certain conditions produce seemingly 
random responses.  Such bounded nonperiodic, apparently random motions have been 
called “chaotic motions.” Fourier analysis of these responses shows a broad spectrum of 
frequencies in spite of the fact that the excitations are of a single frequency.  In this 
section, a few examples of chaotic response of simple dynamical systems are presented.  
 
Example 1: Duffing Oscillator (Y. Ueda in “New Approaches to Nonlinear Problems in 
Dynamics,” Ed. P.J. Holmes, SIAM (1980). 
 

Consider a Duffing oscillator 
 

 tcosBx
dt
dxk

dt
xd 3
2

2

=++  

or 

 y
dt
dx

=  

 

 tcosBxky
dt
dy 3 +−−=  

 
Numerical 

solution to the 
Duffing equation 
shows for certain 
range of values for 

 and  the 
response becomes 
chaotic (Ueda, 
1980).  Figure 1, 
shows the Poincare 
map for chaotic 
responses of the 
Duffing oscillator.  
Figure 2 shows 
trajectories of 
various steady motions in the phase plane for different values of parameters.  The 
corresponding time histories are shown in Figure 3. 
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Figure 1. Poincare map for chaotic responses of Duffing's oscillator. 
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Figu ent re 2. Trajectories of various steady motions in the phase plane for differ
values of parameters. 

Figure 3. Sample time histories of the response of Duffing's Oscillator. 
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Example 2: Chaotic Vibrations of a Beam with Nonlinear Boundary Conditions 
(F.C. Moon and S.W. Shaw, 1982; F.C. Moon, Chaotic Vibrations, Wiley, 1987) 
 

Consider a cantilever beam with moving boundary and a stop as shown in Figure 
4.  The beam behaves as a simple cantilever when there is no contact between the beam 
and the stop.  At high amplitude vibrations, however, the motion is constraints by the 
presence of the stop and the system behaves as a clamped-pinned beam.  
 

Figure 4. Schematics of the cantilever beam with a stop subject to base excitations. 

 
Equation of Motion: 
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where D is the bending stiffness constant of the beam and ρ  is mass density. 

ME639  G. Ahmadi 3
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  (cantilever) 1i = 875.11 =λ , 7341.01 =α  
 
  (clamped-pinned) 2i = 927.32 =λ , 0008.12 =α  
 
Noting that , solution is given by ( ) 2L1 =ϕ
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where we have used , ( ) 1x11 =ϕ L032.0x1 = , ( ) 48.1x12 =ϕ . 
 
Using a Galerkin procedure and the fact that 
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where 
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where a damping term is added and 
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1ω
ω

=Ω ,  is the damping coefficient. γ

 
In the equation of motion, the upper values in the bracketed terms are used for  

and the lower values are used for .  Moon and Shaw (1982) 
suggested the following numerical values for the parameters: 

,I2AA 10 ∆=< 0AA >

 

         ,   3.19=κ 65.1
I

I48.1

1

2 = ,    0106.0A0 = ,   05.0=γ   

 
 For small Amplitude Oscillation ( 0AA < ), 11 =ω .  For very large amplitude 
oscillation, the frequency approaches the limit 
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2
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κ
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The equivalent force-displacement relation, the phase plane orbits and the 

undamped natural frequency of the beam are shown in Figure 5.  Moon and Shaw (1982) 
performed a series of computer simulations and also experimentally measured the beam 
responses.  Figure 6 provides a sample comparison of their experimental and computer 
simulation responses.  The beam response is clearly asymmetric due to the imposed 
constraint.  The general features of the experimental response are well represented by 
computer simulation. 
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Figure 6. Comparison of experimental and computer simulation 
responses of the beam (Moon and Shaw, 1982). 

Computer 
Simulations 

Experimental 
Response 

Figure 5.  The equivalent force-displacement relation, the phase plane orbits 
and the undamped natural frequency of the beam. 



 

Example 3:  Lorenz Model (Bender and Orszag (1978), McGraw-Hill) 
 
 The Lorenz model is a third-order autonomous system given by 
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where r  is a constant (controlling) parameter. 
 
 When 1r < , the only critical (equilibrium) point is at 0zyx ===  and this point 
is stable.  (Evaluation of the critical points and their stability are discussed in the 
following section.)  Hence, for 1<r , the system does not exhibit random behavior if 

, ,  are small. ( )0x ( )0y ( )0z
 
 For 1>r , the origin is an unstable critical (stationary) point.  In this case, there 
appear other critical points at 1−±== ryx , 1−= rz .  These critical points are stable 
if 211 << r . 
 
 For 21r > , the critical points at 1ryx −±== , 1rz −= , and  are 
all unstable. 

0zyx ===

 
Evaluation of critical (Equilibrium Points) 
 

To find the critical points we set the left-hand side of the differential equation 
equal to zero and solve for the equilibrium points.  That is  
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The middle equation now becomes 
 
 , 0x,0xrxx 3 =⇒=−+− 1rx −±=  
 
Thus, one critical point is  ( 0zyx === ), and the others for 1>r  are 
 
 1rx −±= , 1ry −±= , 1rz −=  
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Stability of the Equilibrium Points 
 

To check the stability, we linearize the equation around the critical point.  That is 
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where the nonlinear terms are neglected. 
 

We then form the characteristic determinant for the x and y equations.  That is we 
assume  and in the governing equations and set the determinant of 
coefficient equal to zero.  i.e., 
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Note that  is not considered since it gives a stable solution .   z tCez −=
 

The corresponding characteristic equation becomes 
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Numerical Simulations 
 
 Sample results of a series of numerical experiments for a range of parameters are 
shown in Figures 7-12 (Orzag and Bender, 1978, Mc Graw-Hill).  
 

For , critical points are 17r =
 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
=
=

0z
0y
0x

 (Unstable),    (Stable) 
⎭
⎬
⎫

⎩
⎨
⎧

=
±==

16z
4yx

ME639  G. Ahmadi 8



 

For an initial condition of x (0) = z(0) = 0, y(0) = 1, Figure 7 shows the time history 
of y(t) and the phase plane orbit in y-z plane.  A regular oscillatory approach to the stable 
critical point  is clearly seen from this figure. ( 16,4,4 −− )

y 

z 

y

Figure 7. Time history of y(t) and the phase plane orbit in y-z plane for r=17. 

 
For , there are three unstable critical (equilibrium) points.  These are 27r =

 

0zyx ===   (Unstable),   (Unstable) 
⎭
⎬
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=
±==

25z
5yx

For an initial condition of x (0) = z(0) = 0, y(0) = 1, Figure 8 shows the time history of 
y(t) and the phase plane orbits in y-x and z-y planes.  The chaotic response of the Lorenz 
model is clearly seen from this figure. 

 

t 

y 

Figure 8.  The time history of y(t) for r = 27. 
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For r=27 and an initial condition of x (0) = z(0) = 0, y(0) = 1, the phase plane orbits 
of the Lorenz model in y-x and z-y planes are shown in Figure 9.  This figure shows that 
the orbit wanders around the unstable critical points erratically that leads to the chaotic 
response.  
 

z

y

x

y 

Figure 9.  Phase plane orbits for the Lorenz model for r = 27. 

 
Round-Off Error Effects 

 
 Figure 10 examines the effect of round-off error on the chaotic response of 
Lorenz model.  Here the simulations are performed using single, double and quadruple 
precision.  While the general features of the chaotic response time histories are quite 
similar, this figure shows that the time histories evaluated using single precision is quite 
different from those obtained by double and quadruple precision.  The time histories of 
the double and quadruple precision cases are also somewhat different.  Thus, the chaotic 
response time histories are sensitive to the numerical round-off error.  The power spectra 
shown in Figure 10, however, indicate that the frequency content of the response is not 
sensitive to the amount of round-off error.  
 
Truncation Error Effects 
 
 The effect of truncation error on the chaotic response of Lorenz model is shown in 
Figure 11.  Here the simulations are performed for t∆ of 0.00125, 0.0025, 0.005 and 0.01.  
It is seen that the individual time history varies significantly with the choice of time step.  
The overall features of the response, however, remain the same.  This indicates that the 
chaotic response is sensitive to the truncation error. 
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These results imply that computer simulation can predict the statistical features of the 
time history and the frequency content of the chaotic response with reasonable accuracy.  
The precise evaluation of individual time history of the response, however, is difficult 
due to sensitivity of the system to small perturbations. 

Figure 10.  Effect of round-off error on chaotic response of Lorenz model. 

Figure 11.  Effect of truncation error on chaotic response of Lorenz model. 
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The simulation results shown in Figures 10 and 11 imply that computer 
simulations can predict the statistical features of the time history and the frequency 
content of the chaotic responses with reasonable accuracy.  The precise evaluation of 
individual time history of the response, however, is difficult due to sensitivity of the 
system to small perturbations. 
 
 
Example 3: Fifth Order Systems 
 
 Consider a fifth-order system given by 
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i yy2yyyy

dt
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Chaos in a Double-Diffusive Convection Model in the Presence of Noise (S. A. Abu-
Zaid and G. Ahmadi, Appl. Math. Modeling, Vol. 13 (1989) 
 
Mathematical model 
 
The equations describing convection in a horizontal layer of thickness  in the presence 
of a dissolved solute of concentration , in the Boussinesq approximation, are 

d
S

 
 ( ) ( ) ( ) uuuu 2

00t0 gpp ∇ρν+ρ−ρ+−−∇=∇⋅+∂ρ            (1) 
 
               (2) TTT 2

Tt ∇κ=∇⋅+∂ u
 
                (3) SSS 2

St ∇κ=∇⋅+∂ u
 
                 (4) 0=⋅∇ u
 
 ( ) (( )000 SSTT1 )−β+−α−ρ=ρ              (5) 
 
where  is the velocity vector, p  is the pressure, T  is the temperature,  is the 
concentration, ρ  is the density,  is the solutal diffusivity, 

u S

Sκ Tκ  is the thermal diffusivity, 
α  is the coefficient of thermal expansion, β  is the corresponding coefficient for salt, and 

 is the kinematic viscosity. Here the subscript zero denotes a reference value. v
 
 Introducing the stream function ψ  with 
 
                (6) ( ψ∂ψ∂−= xz ,0,u )
 
and setting 
 

 
( )( )
( )( )t,z,xz1SSS

t,z,xz1TTT

0

0

Σ+−∆=−
θ+−∆=−

             (7) 

 
we rewrite equations (1) – (4) as 
 
 ( )[ ] ψ∇+Σ∂−θ∂=ψ∇ψ+ψ∇∂σ− 4

xSxT
22

t
1 RR,J            (8) 

 
               (9) ( ) θ∇+ψ∂=θψ+θ∂ 2

xt ,J
 
             (10) ( ) Σ∇τ+ψ∂=Σψ+Σ∂ 2

xt ,J
 
Here 
 ( ) θ∂ψ∂−θ∂ψ∂=θψ xyyx,J             (11) 
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where  is the thermal Rayleigh number,  is the solutal Rayleigh number,  is the 
Prandtl number, and  is the Lewis number. 

TR SR σ
k

 
 We consider the first mode of the flow field and the first two modes of the 
temperature and concentration fields.  That is 
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Substituting the assumed solutions given by (13)-(15) into the governing equations of 
motion given by (1)-(4), we find 
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With  Noise No Noise 

 Figure 13. Time variations of modal amplitudes for r .10T =

 

With Noise 

 Figure 14. Time variations of modal amplitudes for r .40T =



 

 

Figure 15.  Phase plane orbit for 

With Noise

with and without external noise. 40rT =

 

With Noise 

with and without external noise. Figure 16.  Autocorrelation functions for r 40T =

ME639  G. Ahmadi 16



 

ME639  G. Ahmadi 17

Figure 17.  Time histories of the stream function modal amplitude for of 50, 
78, 80, 82 and sensitivity to initial condition. 

Tr



 

 

Figure 18. Time histories of the stream function modal amplitude for  
Tr = 80 in the presence of noise and sensitivity to initial condition. 

 
 
 

Figure 19.  Poincare maps for r 40T = with and without external noise. 
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Chaotic Thermal Convection (McLaughlin and Orszag, JFM 1982) 
 
 The fluid is assumed to satisfy the Boussineq conditions, so that the governing 
equations of motion are 
 

 ( θ+∇+π∇−×=
∂
∂ kvωvv 2Pr )

t
,          (1) 

 

 θ∇+=θ∇⋅+
∂
θ∂ 2wRa
t

v ,           (2) 

 
              (3) 0=⋅∇ v

 

where  is the velocity field. )w,v,u(v = vω ×∇=  is the vorticity, 2v
2
1p +=π  is the 

pressure head, with  the pressure, and p θ  is the deviation of the temperature from the 
conduction profile.  Here 
 

 
νκ
∆β

=
THgRa

3

 = Rayleigh Number,         (4) 

 

κ
ν

=Pr  = Prandtl Number,  ( 71.0Pr =  for air).       (5) 

 
H  is the thickness of the layer and β  is the coefficient of thermal expansion. 
 It is assumed that the velocity and the temperature field can be expanded by a 
Fourier-Chebyshev series.  That is 
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Here  represents the Chebyshev polynomials and PT 16=== PMN  is used. 
 
 Sample time histories of the velocity field are shown in Figure 20.  It is seen that 
at high Rayleigh numbers the flow becomes chaotic and turbulent. 
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Ra=25000 Ra=15000 

Figure 20.  Time histories of the velocity component v(X/4, Y/4, 4/2 , t for 
different Rayleigh numbers. 

 
 
Simulation of a Two-Dimensional Turbulent Flow Field (G. Ahmadi and 
V.W. Goldschmidt, Developments in Mechanics Vol. 6, 1971) 
 
 Direct numerical simulation of two-dimensional isotropic turbulence is performed 
using a spectral method. 
 
 
Navier Stokes Equation 
 

f
2

Lf
ff

f

Re
1P1

t
uuuu

∇+∇
ρ

−=∇⋅+
∂
∂             (1)  

 
                 (2) 0f =⋅∇ u
 
The velocity field is expanded into Fourier series given as  
 
               (3) ( ) ( )∑ ⋅=

K

xKuxu i
f et,Kt,

 
Introducing the expansion given by (3) into the Navier-Stokes equation given by (1) after 
some algebra the system of differential equations for the Fourier amplitudes are derived.  
The resulting systems of coupled differential are truncated and solved numerically on a 
CDC-6400 computer. 
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Navier-Stokes Equation in Wave-Vector Space 
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Similarly the continuity equation (2) in wave vector space becomes 
 
 ( ) ( ) 0Kt,K,KvKt,K,Ku yyxxyx =⋅+⋅ .            (5) 
 

In these simulation a 
random Gaussian excitation 
was imposed to conserve 
energy. 

Figure 21 shows the 
resulting energy spectrum at 
the equilibrium condition.  
The corresponding 
longitudinal and lateral 
autocorrelation functions are 
shown in Figure 22.  A 
sample instantaneous velocity 
field is plotted in Figure 23. 

Figure 21.  Energy spectrum as a function of wave number. 
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Figure 22. Longitudinal and lateral autocorrelation functions. 

Figure 23.  An instantaneous velocity contours.
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Bifurcation Theory 
 
 Bifurcation theory is a theory of equilibrium solutions of nonlinear equations. The 
motion of a viscous fluid is governed by the Navier-Stokes equation written formally as 
 

 ( )Re,N
t

uu
=

∂
∂ , 

 
where  is the Reynolds number. By an equilibrium solution, we mean a solution to 
which  is evolved after the transient effects associated with the initial values have died 
away. Equilibrium solutions may be time-invariant, time-periodic, quasi-periodic, or 
chaotic depending on conditions. 

Re
u

 
 As the Reynolds number is varied, a critical value  can be reached beyond 
which the original solution becomes unstable.  New solutions, called bifurcating 
solutions, appear, some of which may be stable and some others may be unstable. 

Re

 
 A bifurcation is called supercritical if there is at least one branch of stable 
bifurcating solutions that is continuous with the original solution at the bifurcating point.  
Otherwise, it is subcritical bifurcation. 
 
 A bifurcation is “regular” if the original time-invariant equilibrium solution is 
replaced by another time-invariant equilibrium solution. If the original time-invariant 
solution is replaced by a branch of stable equilibrium solutions which is time-periodic, 
then the bifurcation is referred to as the “Hopf” bifurcation.  A third type of bifurcation 
occurs if a quasi-periodic solution is replaced by a bounded periodic solution having 
chaotic character. 
 
Landau-Hopf Theory of Turbulence 
 
 Landau-Hopf model views turbulence as a consequence of a countably infinite 
sequence of bifurcations of solutions to the Navier-Stokes equation.  Each bifurcation 
produces an increasingly complicated quasi-periodic motion of the fluid. 
 
 Laudau-Hopf theory lost its credibility in the recent past. While such a flow 
would present a generally chaotic appearance, it would lack sensitivity to initial 
conditions. Moreover, its power spectrum would contain well-defined sharp peaks at each 
of the dominant frequencies, rather than the broad-band noise-type which is the 
characteristic of turbulent flows. 
 
Strange Attractor Theory of Turbulence (Ruelle-Takens) 
 
 Ruelle and Takens proved that the solutions of the Navier-Stokes equation will 
become attracted to a mathematical structure called a strange attractor after, at most, four 
bifurcations with respect to the Reynolds number, .  Such solutions have: Re

a) Chaotic, but bounded, temporal behavior 
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b) Extreme sensitivity to initial conditions 
 

Strange attractor can occur in (forced) dissipative nonlinear dynamical systems. A 
strange attractor can be loosely defined as a subset of solutions all of which are 
bounded and aperiodic. Each member of this bounded aperiodic set occupies zero 
volume in the solution space. 
 
 Intermittency and coherent structure of turbulence are compatible with the 
strange-attractor behavior. 
 
Definitions of Turbulent Flows 
 
G.I. Taylor & Von Karman (1937) 
 
 “Turbulence is an irregular motion which in general makes its appearance in 
fluids, gaseous or liquid, when they flow past solid surfaces or even when 
neighboring streams of the same fluid flow past or over one another.” 
 
Hinze (1959) 
 
 “Turbulent fluid motion is an irregular condition of flow in which the various 
quantities show a random variation with time and space coordinates, so that 
statistically distinct average values can be discerned.” 
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