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Non-Wandering Set
A set of  points that orbits starting form 
this set come arbitrary close and 
arbitrary often to any point in the set
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Lyapunov (Marginal) Stability
A non-wandering set (NWS) is 

Lyapunov stable if every orbit starting in its 
neighborhood stays in its neighborhood.
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LyapunovLyapunov stable if every orbit starting in its stable if every orbit starting in its 
neighborhood stays in its neighborhood.neighborhood stays in its neighborhood.
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A NWS is asymptotically stable if in 

addition to Lyapunov stability every orbit in 
its neighborhood  approaches the NWS.

Asymptotic StabilityAsymptotic Stability
A NWS is asymptotically stable if in A NWS is asymptotically stable if in 

addition to addition to LyapunovLyapunov stability every orbit in stability every orbit in 
its neighborhood  approaches the NWS.its neighborhood  approaches the NWS.
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Asymptotically stable non-wandering 
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Asymptotically stable nonAsymptotically stable non--wandering wandering 

sets are called attractors.sets are called attractors.

Basin of Attraction
The set of all initial states that 

approach the attractor.

Basin of AttractionBasin of Attraction
The set of all initial states that The set of all initial states that 

approach the attractor.approach the attractor.
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A change in the number of attractors of a A change in the number of attractors of a 
nonlinear dynamical systems with the change nonlinear dynamical systems with the change 
of a system parameter is called of a system parameter is called bifurcationbifurcation..

BifurcationBifurcation is associated with the is associated with the 
change of stability of  an change of stability of  an attractorattractor..

In a bifurcation point, at least one In a bifurcation point, at least one 
eigenvalueeigenvalue of the of the JacobianJacobian will attain a will attain a 
zero real part.zero real part.
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In a stationary bifurcation, a single In a stationary bifurcation, a single 
real real eigenvalueeigenvalue crosses the boundary crosses the boundary 
of stability.  of stability.  
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HopfHopf bifurcation occurs when a bifurcation occurs when a 
conjugated complex pair crosses the conjugated complex pair crosses the 
boundary of stability.boundary of stability.
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For For µµ<0, u=0 is a stable equilibrium solution.  <0, u=0 is a stable equilibrium solution.  

For For µµ>0, u=0 is an unstable equilibrium >0, u=0 is an unstable equilibrium 
solution, and u= solution, and u= ±µ±µ1/21/2 are stable solutions. are stable solutions. 

At At µµ=0, a =0, a suppercriticalsuppercritical Pitchfork Pitchfork 
bifurcation occurs.  bifurcation occurs.  
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For For µµ>0, u=0 is an unstable equilibrium solution.  >0, u=0 is an unstable equilibrium solution.  

For For µµ<0, u=0 is a stable equilibrium solution, <0, u=0 is a stable equilibrium solution, 
and u= and u= ±±((--µµ))1/21/2 are unstable solutions. are unstable solutions. 

At At µµ=0, a =0, a subcriticalsubcritical Pitchfork Pitchfork 
bifurcation occurs.  bifurcation occurs.  
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For For µµ<0, u=0 is a stable equilibrium solution, <0, u=0 is a stable equilibrium solution, 
and u=and u=µµ is an unstable solution. is an unstable solution. 
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At At µµ=0, the two solution exchange stability =0, the two solution exchange stability 
and a and a transcriticaltranscritical bifurcation occurs.  bifurcation occurs.  

For For µµ>0, u=0 is an unstable solution, and u=>0, u=0 is an unstable solution, and u=µµ is is 
a stable equilibriuma stable equilibrium solution. solution. 


