CONSERVATION LAWS
Axiom 1: Principle of Conservation of Mass

Mass is invariant under the motion. That is,
%'[pdv =0.
Using the Reynolds transport theorem, we find
0
= [pdv+[pv-ds=0 (Global)
or

_\':((Zt_p'*‘ (ka),kjdV =0.

That leads to the equation of continuity

88_[‘: +(pv, ), =0. (Local)

Axiom 2: Principle of Balance of Linear Momentum
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The time rate of change of momentum is equal to the resultant force acting on the

body. That is

%Ipvkdv = jpfkdv + Itf(“)ds,

()

where f, is the acceleration of the body force and t\" is the surface traction force. Using

the Reynolds transport equation, we find

%J.pvkdv+'[pvkvjdsj = Ipfde+ItL“)ds. (Global)

Introducing the stress tensor t, as

(n) _ (n) _
t, =t,n,, 7V =n-t,

(6)

(7)
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the last term in (6) may be restated as

jt(kn(,ds = jtgk%dv.

Using the divergence theorem in the second term of (6) or noting that %(pdv) =0 in (5),

we find

'[( tos )dv=0 .
This implies that
P < pf, 1y, (Local) ®)

Axiom 3: Principle of Balance and Angular Momentum

Time rate of change of angular momentum about a fixed point is equal to the
resultant moments about that point. That is

%J.P(Gk + il VAV = IpSkmjrmfjdV + Iskmj r,ti"ds+ jm(n)ds + J.p(kds , (9)

where o, is the inertial spin, r,, is the position, m\" is the surface couple, and /, is the
body couple per unit mass.

Introducing the couple stress m,, as
m® =

=m,n,, m” =n-m, (10)

and applying the divergence theorem, we find

Ip(ck + €l V )dV I[pgkmjrmfj + (gkmjrmt(j),/f +m, , + pfk]dv- (11)

Note that

(Skmj m (J)/ gkm_] mj +8kmjrmt€j,£' (12)
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Taking the cross product of r and equation (8), it follows that
EpmilmVj = pskrm.rmfj + €T s - (13)
Using (12) and (13) in (11), we find
PG, =Pl + &ty T My, (Local) (14)

Equation (14) is the statement of local conservation of angular momentum for a polar
media.

When
o, =l =m, =0, (15)
Equation (14) reduces to

€ty =0, (16)

m;

i.e., the stress tensor must be symmetric for a nonpolar media.

Axiom 4: Principle of Conservation of Energy

Time rate of change of internal and kinetic energy is equal to the rate of work
done by the external force and the net heat transferred to the body. That is

%(K+E):W+Q. (17)

Here, K is the kinetic energy, E is the internal energy, W is the rate of work done, and Q
is the rate of heat transfer. Equation (17) may be restated as

%jp[eJr%Vkajdv = jpkade+IVk -tf(“)ds+jqkdsk +Iprdv , (18)

Using the divergence theorem, we find

Jp(é +v, ¥, Jdv = _f(pkak +Vity T e Vi, F 4, Hprdv. (19)

Taking the dot product of equation (8) with v, and subtracting the result from
(19), leads to the local form of the conservation of energy. That is
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pe = ta Vo T +PT. (Local) (20)

In these equations, eis the internal energy density, q, is the heat flux vector pointing
outward, and r is the internal heat source per unit mass.

Axiom 5: Entropy Inequality (Clausius-Duhem)

Time rate of change of the entropy minus the net heat transferred divided by the
temperature must be positive. That is,

%!pndv—!%ds—!%dvzo, (21)

where n is the entropy density and T is the temperature.

Inequality (21) may be restated as

J(pn—(%k),k —%]dvz 0, (22)

v

or
N— (=< ——r >0 Local 23
pn—( T ),k T . ( ) (23)

In summary, the basic conservation laws in vector notation are:

2—T+V-(pv):0 (24)
pi—\:zpf+v~t, t=t" (25)
de

pa=t:VV+V-q+pr (26)
d_n_ (Ay_Prs 2
pdtv(T)T_O (27)
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Continuum Thermodynamics and Constitutive Equations

Introducing the Helmholtz free energy function

y=e—-Tn, (28)
entropy inequality (27) may be restated as

Be=Tn-9)-9, %20, (29)
Here, we used

y=¢-Tn-Ty (30)
to eliminate 1.

Using the energy equation (26) to eliminate ¢ in (29), we find

%{—p(wnT)H/‘kva RCIEEY P 31)

Inequality (31) is an alternative statement of the Clausius-Duhem inequality.

Constitutive Postulates

Assume that

v =y(T,p,d,,,T,), (32)
where

1
d,, :E(Vk,(’ +V,4) (33)

is the deformation rate tensor. From (33), it follows that

=N W, Vg, OV (34)
or " op ad, T,

By definition, the thermodynamic pressure is given as



6W: 28_\If.

P=_ap_1 P o0

Continuity equation implies that

p=—pdy.
Thus,

oy .

_Wp = _Bdkk

op p

Using (34) and (37) in (31) and collecting terms, we find

1
T

0 .
p dezﬂ'

oy . 0
— _p(a_T‘FTI)T"'(tkz +pd,,)d,, —p T

L(35)
(36)
(37)
>0 (38)

Inequality (38) must hold for all independent variations of T, i ,d,,,d,,and T,.

Thus, It follows that

_ov
T’

oy oy

oT, ad,

3

and (38) reduces to

qkT,k

(ty +pdy,)d,, +

Linear Constitutive Equations

(39)

(40)

(41)

The general linear constitutive equations for the stress tensor and the heat flux

vector are given as
t, =-pd, + Lk/,ijdij >
q, =LT

ki)

Subjected to constraints,

(42)

(43)
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L, ;dzd,, 20, L,T,T;>0. (44)
Here, L, ,; and L,; are, respectively, a fourth order and a second order constant tensors.

For an isotropic fluid, L 's must be isotropic tensors. The most general forms of
isotropic tensors of fourth and second order are:

Lk(ij = 7“81(/461]' + “(SkiS/,j + Skjsffi)—i— H1(6k18/,j - 8kj8/,i) >
(45)

L, =xd, (46)

where A, 1, U,, and k are the material constants that, in general, are functions of
temperature.

Using (45) and (46) in (42) and (43) and noting that d,, is a symmetric tensor, we
find

t, =(Cp+Ad;)d,, +2ud,, (47)
q, =xT,. (48)

These are Newton's laws of viscosity and Fourier's law of heat conductivity. Inequality
(44) imposes the following constraints on the coefficients of viscosity and heat
conductivity:

3A+2u2>20, u>20, k>0. (49)

Stokes assumed that

xz_gu (50)

so that the pressure is the negative of average normal stresses at t point. Stokes

. . . 1
assumption given by Equation (50) leads to p = _gtkk .

Navier-Stokes Equation

Using (47) in (25), we find
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dv,
pT:_p,k + UV i +(}\‘+M)Vj,jk +pf, . (51)
For an incompressible fluid,
V-v=0, (52)
and
p((ll—\::—Vp+pV2v+pf . (53)

Equations (52) and (53) are four equations for determining four unknowns Vv, p for an
incompressible flow.

Energy Equation

Using Equation (48) (for a non-constant k) in (26), we find

de
pE=V~(KVT)+tUVLi +pr. (54)
Noting that
tivii =PV T O, (55)

where the dissipation function is defined as

O =Av, Vi +2udyv ;. (56)
Noting that
pdp_ d p. dp
v, =_papb 2 Py “P 57
PVik o dt pdt(p) dt (57)
and using (56) and (57) in Equation (54), we find
dh dp
—=—+4+V - (xkVT)+ D +pr, 58
P~ dt (xVT) p (58)

where



h=e+?
p

is the enthalpy.
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(59)

For flows with constant properties, assuming the perfect gas relationship

dh =c,dT, de=c dT,

(60)

where ¢, and ¢ are heat capacities at constant pressure and volume, we find

dT dP )
C,b—=—"+kV T+D+pr.
Por 4~ dt P

For incompressible fluids, the energy equation becomes
pcv(;—f: kV’T+® +pr,

where

® = H(Vi,j + Vj,i)Vj,i

Density Change Due to Temperature Variation

For incompressible fluids, Boussinesq assumed that
p=p,1-B(T-T,)), B =const.

When the body flow is only due to gravity, we have
pf = —pygk[l-B(T - T,)].

Using (65) in (53), we find
dv )
poa =-Vp+uVv V_pog[l_B(T_To)]k .

or

dv ~
Po E =-VP+ Hvzv —pogB(T-Tyk,

(61)

(62)

(63)

(64)

(65)

(66)

(67)
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where we have defined excess pressure beyond hydrostatics as

13=p+p0gz. (68)
For a general body force, we find

po‘;—‘t’:—vﬁwvzv—poﬁ(T—To)f. (69)

Dimensionless Equations

It is advantageous to express the governing equations in nondimensional forms.
We introduce dimensionless quantities:

Xi:i,v :L,t = w,p :i, (70)
L Uoo L pO

. P- . T-T, ..

prot Tl p Il e T (71)
PoUL AT, g

where L, U_, p,and T, are length, velocity, density and temperature scales. Using (70),
the equations of motion and energy transport in nondimensional form become

*

ot
dt Re Re
CLI AN (74)
dt dtt  RePr Re

Here, we have defined the following dimensionless groups:

pOUooL
I )

Reynolds number = Re = (75)

Prandtl number = Pr = 2°¢ , (76)
K
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2

Eckert number: Ec = U, , (77)
c, AT,

gBpoL'AT,

2

u

Grashof number: Gr = (78)
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