
 

CONTINUUM FLUID MECHANICS 
 
Motion 
 
 A body is a collection of material particles.  The point  is a material point and it 
is the position of the material particles at time zero. 

X

                  3x  
Definition: A one-to-one one-parameter mapping             
                 

3X

            X            x )t,(Xxx =
                        2X 2x
is called motion. The inverse    t =0    
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  )t,(xXX =
 
 
is the inverse motion.  are referred to as the material coordinates of particle , and  
is the spatial point occupied by  at time t. 

kX x x
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Theorem: The inverse motion exists if the Jacobian, J of the transformation is nonzero.  
That is 
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This is the statement of the fundamental theorem of calculus. 
 
Definition: Streamlines are the family of curves tangent to the velocity vector field at 
time t . 
 
 Given a velocity vector field , streamlines are governed by the following 
equations: 
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Definition: The streak line of point  at time t  is a line, which is made up of material 
points, which have passed through point  at different times 

0x
0x t≤τ . 

 
 Given a motion  and its inverse )t,(xx ii X= )t,(XX KK x= , it follows that the 
material particle  will pass through the spatial point  at time 0

kX 0x τ . i.e., 
 

),(X tx  

Figure 1.  Schematic of motion. 
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Thus, the equation for the streak line of  at time t  is given by 0x
 
    for fixed . t),,((xx 00

ii τ= xX t
 
Deformation Rate Tensors 
 
 Suppose a motion  is given. )t,(Xxx =
 
Definition: Deformation Gradient 
 

 KK,kK
K

k
k dXxdx

x
xdx =
∂
∂

= .                         (1) 
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xx
∂
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=  is referred to as the deformation gradient tensor. 

 

 
k

K
k,K x

XX
∂
∂

=  is the (inverse) deformation gradient tensor. 

 
Definition: Deformation Tensors 
 
 An element of arc in the deformed body is given as 
 
 .               (2) ll kk

2 dxdxds δ=
 
The distance from the origin in the un-deformed body is given by 
 
                (3) KLLK

2 XdXdS δ=
 
Using the deformation gradient, (1) may be restated as 
 
 ,            (4) LKKLklLL,KK,k

2 XdXCdXxdXxds =δ= l

 
where  is the Green deformation tensor. L,K,kklKL xxC lδ=
 
Similarly, (3) may be rewritten as 
 
 ,            (5) llll dxdxcdxdxXXdS kkkKL,Lk,K

2 =δ=
 
where  is the Cauchy deformation tensor. KL,Lk,Kkl XXc δ= l
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Definition: Strain Tensors 
 
 The change in the square of arc length during the deformation is given by 
 
 ,           (6) LKKLLKKLKL

22 dXdXE2dXdX)C(dSds =δ−=−
 
Here, we introduced the Lagrangian strain tensor 
 
 .                          (7) KLKLKL CE2 δ−=
 
Similarly, (6) may be restated as 
 
 ,           (8) lll dxdxe2dxdx)c(dSds kkkklkl

22 =−δ=−
 
where the Eulerian strain tensor is defined as 
 
 .               (9) lll kkk ce2 −δ=

 
 
Partial and Total Time Derivatives 
 
Let A be any scalar or tensor quantity. The partial time derivative is defined as 
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A
t
A

∂
∂

=
∂
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The material derivative (total time derivative) is defined as 
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Definition: Velocity 
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Definition: Acceleration 
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Definition: Path lines 
 
 The curve in space along which the material point x  travels is referred to as the 
path line of the material particle . X
 
The equation for the path line of  is x
 

)t,(Xxx =  for fixed .              (14) X
 

If the velocity  field is known, then equations 
 

 )t,(v
dt

dx
i

i x=  for               (15) 3,2,1i =

 
must be solved for evaluating the path lines. 
 
 
Deformation Rate Tensor 
 
 Material derivatives of  and deformation gradients are given as kdx
 

 lldxvdXv)dXx(
dt
d)dx(

dt
d
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Theorem: The material derivative of the square of the arc length is given by 
 

 ll dxdxd2)ds(
dt
d

kk
2 =                        (18) 

 

where )vv(
2
1d k,,kk lll +=  is the Eulerian deformation rate tensor. 

 
Proof:  
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Now using (16), we find 
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Relationships between Deformation Rate Tensors and Deformation Strain Tensors 
 
 From (4), recall that .  Taking the material derivative, we find LKKL

2 dXdXCds =
 

 ll
&& dxdxXXCdXdXC)ds(

dt
d

k,Lk,KKLLKKL
2 ==          (19) 

 
Equation (18) implies that 
 

 LKL,K,kkkk
2 dXdXxdxd2dxdxd2)ds(

dt
d

llll ==          (20) 

 
From (7), it follows that 
 
 .              (21) KLKL E2C && =
 
From (19)-(21), we find 
 
             (22) L,K,kkKLKL xxd2E2C ll

&& ==
 
and 
 
           (23) lll

&&
,Lk,KKL,Lk,KKLk XXE2XXCd2 ==

 
Equations (22) and (23) show the relationship between the deformation rate tensor 
and the material derivative of Green's deformation tensor and Lagrangian strain tensor. 

lkd  

 
Rivlin-Ericksen Tensors 
 
Definition: The Rivlin-Ericksen tensor of order n is defined as 
 

 ll dxdxA)ds(
dt
d

k
)n(

k
2

n

n

= .            (24) 

 
Clearly, 
 
 .                         (25) ll k

)1(
k d2A =

 
The Rivlin-Ericksen tensor satisfies the following recurrence relationship: 
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For example, 
 
                       (27) k,mm,mkmk

)2(
k vd2vd2d2A llll

& ++=
 
The Rivlin-Ericksen tensors are important tensors for certain viscoelastic materials. 
 
 
Lemma: The material derivative of the Jacobian is given by 
 

 k,kJvJ
dt
d

= .              (28) 

 
Time Rate of Change of Volume Element 
 
 Noting that  
 

JdVdv = ,              (29) 
 
It follows that 
 

 JdVvdV
dt
dJdv

dt
d

k,k== , 

 
or 
 

 dvvdv
dt
d

k,k= .                        (30) 

 
 
Reynolds Transport Theorem 
 
 The material derivative of an integral taken over a material volume is given as 
 

 ∫∫∫∫∫∫∫∫ ⋅+
∂
∂

=
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fdv
t
ffdv

dt
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Proof: 
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Using (30), we find 
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Noting that 
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Using the divergence theorem (25) follows. 
 
 
Spin and Vorticity 

 
Spin tensor is defined as:  
 

)vv(
2
1

k,,kk lll −=ω              (32) 

 
Vorticity vector is defined as:  
 

j,kijkkjijki vε=ωε=ζ              (33) 
 

Angular velocity vector is defined as  
 

ii 2
1
ζ=ω .              (34) 

 
In vector notation, we have 
 

 , vζ ×∇= vω ×∇=
2
1                        (35) 

Note that 
 
  (ωdv +=∇ T)( , ijijj,i dv ω+= )                      (36) 
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